B modeling ============== Modeling B corresponds to the case **a/b = 0.01**. Characteristics of modeling ----------------------------------- .. image:: images/10005166000029570000290872590073BD5BE461.svg :width: 377 :height: 365 .. _RefImage_10005166000029570000290872590073BD5BE461.svg: **Full mesh** .. image:: images/10004532000026C2000025B960DF6D62BFCC3611.svg :width: 377 :height: 365 .. _RefImage_10004532000026C2000025B960DF6D62BFCC3611.svg: **Zoom** .. image:: images/100025BA00002C2200001177EA2F86BAF4B15A5D.svg :width: 377 :height: 365 .. _RefImage_100025BA00002C2200001177EA2F86BAF4B15A5D.svg: **Zoom of the crack point** Characteristics of the mesh ---------------------------- 2095 nodes and 680 elements including 640 QUA8 and 40 TRI6 Features tested ------------------------ .. csv-table:: "**Orders**", "", "", "" "AFFE_MODELE "," THERMIQUE "," AXIS ", ", "" "AFFE_CHAR_THER "," TEMP_IMPO ", "", "", "" "AFFE_MODELE "," MECANIQUE "," AXIS ", ", "" "AFFE_MATERIAU "," AFFE_VARC "," NOM_VARC =' TEMP '", "", "" "CALC_G "," OPTION ", "G_ EPSI ", "", "" "CALC_G "," OPTION ", "K", "", "" "", "", "", "", "" In this test, the mechanical result post-processed by the operator CALC_G comes from a CREA_RESU. As this type of result contains only displacements and no constraints, it is necessary to calculate these constraints within the CALC_G operator from the displacement fields. This operation is carried out by choosing to calculate the option G_ EPSI. Definition of crown radii ----------------------------------- Several successive pairs of radii for the lower and upper integration rings are retained. These rays should be specified in the CALC_G keyword factor THETA: .. csv-table:: "", "", "Crown No. 0", "Crown No. 1", "Crown No. 1", "Crown No. 2", "Crown No. 3", "Crown No. 4" "", "ring", "1.E-6", "1.5E-5", "1.75E-5", "2.E-5", "2.25E-5" "", "rsup", "2.5E-5", "1.75E-5", "1.75E-5", "2.25E-5", "2.5E-5", "2.5E-5" Reference solutions ---------------------- For an a/b ratio = 0.01 (and a = 2.5.10-5 m), the reference solution for KI is: :math:`{K}_{I}=0.9609\text{MPa}\cdot \sqrt{(\text{m})}` To calculate the energy return rate, we use the formulas of IRWIN in plane deformations: :math:`{G}_{\mathrm{réf}}=\frac{1-{\nu }^{2}}{E}({K}_{I}^{2}+{K}_{\mathrm{II}}^{2})`, with :math:`{K}_{\mathrm{II}}^{2}=0` either: :math:`{G}_{\mathrm{réf}}=4.2019{\text{J.m}}^{-2}` Tested sizes and results ------------------------------ .. csv-table:: "**Parameter**", "**Unit**", "**Option**", "**Option**", "**Crown**", "**Aster**", "**%** Tolerance" "G", "J.m-1", "G_ EPSI ", "crown No. 1", "4.2019", "4.1567", "2" "G", "J.m-1", "G_ EPSI ", "crown No. 2", "4.2019", "4.1554", "2" "G", "J.m-1", "G_ EPSI ", "crown No. 3", "4.2019", "4.1544", "2" "G", "J.m-1", "G_ EPSI ", "crown No. 4", "4.2019", "4.1554", "2" "K1"," MPa .m-2", "K", "crown No. 0", "0.9609", "0.9653", "2"