3. Modeling A#

Modeling A corresponds to the case a/b = 0.4.

3.1. Characteristics of modeling#

Z

R

_images/10004EF6000027CA000027CA38D683EFDCEE0232.svg

Full mesh

_images/10002CD60000293D0000166D10599F27CA33D43E.svg

Zoom of the crack point

3.2. Characteristics of the mesh#

1756 knots and 569 elements including 529 QUA8 and 40 TRI6

3.3. Tested features#

In this test, the mechanical result post-processed by the operator CALC_G comes from a CREA_RESU. As this type of result contains only displacements and no constraints, it is necessary to calculate these constraints within the CALC_G operator from the displacement fields. This operation is carried out by choosing to calculate the option G_ EPSI.

3.4. Definition of crown radii#

Several successive pairs of radii for the lower and upper integration rings are retained. These rays should be specified in the CALC_G keyword factor THETA:

Crown No. 1

Crown No. 2

Crown No. 2

Crown No. 3

Crown No. 4

ring

1.E-6

2.5E-5

5.E-5

7.5E-5

7.5E-5

rsup

2.5E-5

5.E-5

7.5E-5

1.E-4

3.5. Benchmark solutions#

For a ratio a/b = 0.4 (and a = 10-3 m), the reference solution for KI is:

\({K}_{I}=4.7419\text{MPa}\cdot \sqrt{(\text{m})}\)

To calculate the energy return rate, we use the formulas of IRWIN in plane deformations:

\({G}_{\mathrm{réf}}=\frac{1-{\nu }^{2}}{E}({K}_{I}^{2}+{K}_{\mathrm{II}}^{2})\), with \({K}_{\mathrm{II}}^{2}=0\)

either:

\({G}_{\mathrm{réf}}={\mathrm{1.0231.10}}^{2}{\text{J.m}}^{-2}\)

3.6. Tested sizes and results#

Parameter

Unit

Option

Option

Crown

Aster

% Tolerance

G

J.m-1

G_ EPSI

crown No. 1

1,0231.102

0,9701.10 2

6

G

J.m-1

G_ EPSI

crown No. 2

1,0231.102

1,0051.10 2

2

G

J.m-1

G_ EPSI

crown No. 3

1,0231.10 2

1,0055.10 2

2

G

J.m-1

G_ EPSI

crown No. 4

1,0231.102

1.01.102

2

K1

MPa .m-2

K

crown No. 1

4.7419

4.4145

8

K1

MPa .m-2

K

crown No. 2

4.7419

4.7571

2

K1

MPa .m-2

K

crown No. 3

4.7419

4.7913

2

K1

MPa .m-2

K

crown No. 4

4.7419

4.8244

2