2. Benchmark solutions#

2.1. Calculation method used for reference solutions#

2.1.1. Modeling A#

The equations governing behavior are nonlinear differential equations. To validate the answer obtained with Code_Aster in non-linear statics, an integration by a Runge-Kutta method is carried out with a tool external to Code_Aster.

The comparison is carried out on the displacement and on the effort, for the 4 types of discrete elements.

_images/10000201000005FE000003D2E5308AB1F2B5F4F6.png

Figure 2.1.1-a : Force displacement curve, modeling A.

The answer given by*Code_Aster* is tested for the following values:

Moment

Movement \({U}_{x}\)

Force \({F}_{x}\)

2.00E-02

5.877852523E-02

2.187710580E+00

4.00E-02

9.510565163E-02

2.829192223E+00

6.00E-02

9.510565163E-02

2.035749590E+00

8.00E-02

5.877852523E-02

2.402408962E-01

1.00E-01

-1.653950414E-16

-1.851221553E+00

1.32E-01

-8.443279255E-02

-3.445042947E+00

2.00E-01

4.196133458E-16

1.745702939E+00

2.32E-01

8.443279255E-02

3.409095131E+00

2.68E-01

8.443279255E-02

1.626471785E+00

3.16E-01

-4.817536741E-02

-2.962435650E+00

3.56E-01

-9.8228725072507E-02

-2.590008311E+00

4.12E-01

3.681245527E-02

2.724835444E+00

4.36E-01

9.048270525E-02

3.394150679E+00

5.20E-01

-5.877852523E-02

-3.151025904E+00

6.24E-01

6.845471059E-02

3.289283317E+00

7.16E-01

-4.817536741E-02

-2.962278876E+00

8.00E-01

1.678385621E-15

1.750844985E+00

8.16E-01

4.817536741E-02

2.962278875E+00

8.48E-01

9.980267284E-02

3.047135026E+00

9.40E-01

-9.510565163E-02

-3.326860603E+00

9.68E-01

-8.443279255E-02

-1.627037269E+00

1.00E+00

-1.224606354E-16

1.750844985E+00

Table 2.1.1-a : Displacement and Forces, modeling A.

2.1.2. B modeling#

This non-linear static modeling makes it possible to test, in addition to the law of behavior, the dissipation during a stabilized cyclic loading. The dissipation is compared to a theoretical value obtained in the particular case \({\alpha }_{3}=1.0\).

Note: For a cyclic loading with \({\alpha }_{3}\ne 1\) the theoretical calculation of the dissipation is not available, except for a stabilized cycle.

The answer given by*Code_Aster* is tested for the following values:

Moment

Movement \({U}_{x}\)

Force \({F}_{x}\)

2.00E-02

5.877852523E-02

2.160195640E+00

4.00E-02

9.510565163E-02

2.849834733E+00

6.00E-02

9.510565163E-02

2.052734480E+00

8.00E-02

5.877852523E-02

2.258915314E-01

1.00E-01

-1.653950414E-16

-1.838798378E+00

1.32E-01

-8.443279255E-02

-3.611426479E+00

2.00E-01

4.195726882E-16

1.674446965E+00

2.32E-01

8.443279255E-02

3.535539017E+00

2.68E-01

8.443279255E-02

1.730277335E+00

3.16E-01

-4.817536741E-02

-2.984761046E+00

3.56E-01

-9.8228725072507E-02

-2.752278435E+00

4.12E-01

3.681245527E-02

2.719185079E+00

4.36E-01

9.048270525E-02

3.544941424E+00

5.20E-01

-5.87785252523E-02

-3.201565830E+00

6.24E-01

6.845471059E-02

3.368686714E+00

7.16E-01

-4.817536741E-02

-2.983942123E+00

8.00E-01

1.678385621E-15

1.687931415E+00

8.16E-01

4.817536741E-02

2.983942066E+00

8.48E-01

9.980267284E-02

3.223403140E+00

9.40E-01

-9.510565163E-02

-3.492301297E+00

9.68E-01

-8.443279255E-02

-1.732887550E+00

1.00E+00

-1.224606354E-16

1.687931421E+00

Table 2.1.2-a: Displacement and Forces, modeling B.

The calculation of the dissipation over a stabilized cycle is obtained by integrating the equations of the system in the particular case where \({\alpha }_{3}=1\).

On a stabilized cycle, for \({\alpha }_{3}=1\), the dissipation value is:

\(\Delta D=\frac{\pi \mathrm{.}{U}_{0}^{2}\mathrm{.}{E}_{1}^{2}\mathrm{.}{E}_{3}^{2}\mathrm{.}\omega \mathrm{.}{C}_{3}}{{\omega }^{2}\mathrm{.}{C}_{3}^{2}\mathrm{.}{({E}_{1}+{E}_{2}+{E}_{3})}^{2}+{({E}_{1}+{E}_{2})}^{2}\mathrm{.}{E}_{3}^{2}}\) [éq2.1.2-1]

2.1.3. C modeling#

This static nonlinear modeling makes it possible to test the law of behavior during a creep test. Displacement is imposed and remains constant: \({U}_{0}=0.1\). The response of the law of behavior as well as the dissipation are compared to the theoretical values obtained in the particular case \({\alpha }_{3}=0.5\).

The integrated differential equations in the particular case of constant \(U\) and \({\alpha }_{3}=0.5\) give the equations of effort and dissipation as a function of time:

\(F(t)=\frac{{U}_{0}\mathrm{.}{E}_{1}\mathrm{.}({\mathrm{AA}}_{s}+{\mathrm{BB}}_{s}\mathrm{.}{E}_{2}\mathrm{.}t)}{{({E}_{3}+{E}_{2}+{E}_{1})}^{2}\mathrm{.}{C}_{3}^{2}+{\mathrm{BB}}_{s}\mathrm{.}({E}_{2}+{E}_{1})\mathrm{.}t}\) [éq2.1.3-1]

\(D(t)=\frac{{U}_{0}^{3}.{E}_{1}^{3}.{E}_{3}^{3}}{2.({E}_{3}+{E}_{2}+{E}_{1})}.\mathit{t.}\frac{(2.{\mathit{AA}}_{e}+{\mathit{BB}}_{e}.t)}{{({\mathit{AA}}_{e}+{\mathit{BB}}_{e}.t)}^{2}}\) [éq2.1.3-2]

with \(\{\begin{array}{}{\mathrm{AA}}_{s}=({E}_{3}+{E}_{2})\mathrm{.}({E}_{1}+{E}_{2}+{E}_{3})\mathrm{.}{C}_{3}^{2}\\ {\mathrm{BB}}_{s}={U}_{0}\mathrm{.}{E}_{1}\mathrm{.}{E}_{3}^{2}\end{array}\{\begin{array}{}{\mathrm{AA}}_{e}={({E}_{3}+{E}_{2}+{E}_{1})}^{2}\mathrm{.}{C}_{3}^{2}\\ {\mathrm{BB}}_{e}={U}_{0}\mathrm{.}{E}_{1}\mathrm{.}{E}_{3}^{2}\mathrm{.}({E}_{2}+{E}_{1})\end{array}\)

2.1.4. D modeling#

The equations governing behavior are nonlinear differential equations. To validate the answer obtained with Code_Aster in non-linear statics, an integration by a Runge-Kutta method is carried out with a tool external to Code_Aster.

The comparison is carried out on the displacement and on the effort.

_images/100002010000052D0000042C70180983A2C042CE.png

Figure 2.1.4-a : Force displacement curve, modeling D.

The answer given by*Code_Aster* is tested for the following values:

Moment

Movement \({U}_{x}\)

Force \({F}_{x}\)

4.000E-03

1.2533323356430E-02

1.3901305564654E+00

4.800E-02

9.9802672872842827E-02

1.5399690347096E+00

1.000E-01

-1.6539504141266E-16

-2.9840799981192E+00

1.360E-01

-9.048270505246602E-02

-2.2555706075403E+00

2.040E-01

1.2533323356431E-02

2.9999350282465E+00

2.480E-01

9.9802672872842827E-02

1.5401915597398E+00

3.040E-01

-1.25333233532356431E-02

-2.9999350282852E+00

3.480E-01

-9.9802672872842827E-02

-1.5401915597074E+00

4.040E-01

1.2533323356431E-02

2.9999350282970E+00

5.000E-01

-1.0045133128078E-15

-2.9840798812719E+00

5.600E-01

-9.5105651629515E-02

-4.1551773591104E-01

6.000E-01

1.3475548801822E-15

2.9840798812750E+00

6.400E-01

9.510565162951629516E-02

2.0490126532863E+00

7.040E-01

-1.25333233523356432E-02

-2.9999350283063E+00

7.480E-01

-9.9802672872842827E-02

-1.5401915596821E+00

8.040E-01

1.2533323356432E-02

2.9999350283073E+00

8.480E-01

9.9802672872842827E-02

1.5401915596806E+00

9.040E-01

-1.253332335323356432E-02

-2.9999350283079E+00

9.480E-01

-9.9802672872842827E-02

-1.5401915596795E+00

1.000E+00

-1.2240642527361E-16

2.9840798812793E+00

Table 2.1.4-a: Displacement and Forces, modeling D.

2.2. Uncertainty about the solution#

2.2.1. Modeling A#

For the effort response, displacement:

The reference solution is obtained by numerical integration of a nonlinear differential system.

2.2.2. B modeling#

For the effort response, displacement:

The reference solution is obtained by numerical integration of a differential system, with a 5th order Runge-Kutta method.

For dissipation:

No uncertainty, the solution is analytical.

2.2.3. C modeling#

For the effort response, displacement:

No uncertainty, the solution is analytical.

For dissipation:

No uncertainty, the solution is analytical.

2.2.4. D modeling#

For the effort response, displacement:

The reference solution is obtained by numerical integration of a differential system.