1. Reference problem#

1.1. Material properties#

    • Elastic:

\(E=3000\mathrm{MPa}\) Young’s module

\(\nu =\mathrm{0,25}\) Poisson’s ratio

DRUCK_PRAGER**linear (A modeling) :

\(\alpha =\mathrm{0,20}\) Pressure dependence coefficient

\({p}_{\mathrm{ultm}}=\mathrm{0,04}\) Ultimate cumulative plastic deformation

\({\sigma }_{Y}=6\mathrm{MPa}\) Plastic constraint

\(h=100\mathrm{MPa}\) Work hardening module

DRUCK_PRAGER**parabolic (B modeling) :

\(\alpha =\mathrm{0,20}\) Pressure dependence coefficient

\({p}_{\mathrm{ultm}}=\mathrm{0,04}\) Ultimate cumulative plastic deformation

\({\sigma }_{Y}=6\mathrm{MPa}\) Plastic constraint

\({\sigma }_{Y}^{\mathrm{ult}}=10\mathrm{MPa}\) Ultimate plastic constraint

1.2. Loads and boundary conditions#

Volume deformation \({\varepsilon }_{v}=\text{tr}(\varepsilon )\) is imposed. The loading is not monotonic: we first charge up to the volume deformation \({\varepsilon }_{v\text{1}}\), by exceeding the plastification threshold, then we discharge at a zero deformation level; then we charge again at the deformation \({\varepsilon }_{v\text{2}}\), thus exceeding the ultimate cumulative plastic deformation \({p}_{\mathrm{ultm}}\), thus exceeding the ultimate cumulative plastic deformation, beyond which we find perfect plasticity; we discharge again at zero stress (deformation equal to the plastic deformation), thus exceeding the ultimate cumulative plastic deformation, beyond which perfect plasticity is restored; we discharge again at zero stress (deformation equal to the plastic deformation) \({\varepsilon }_{v\text{2}}^{p}\)) and recharging is carried out by plasticizing subsequently until deformation \({\varepsilon }_{v\text{3}}\). The loading time (see) is fictional because plastic laws are independent of time.

\(t\)

\({\varepsilon }_{v}\)

0

0

10

\({\varepsilon }_{v\text{1}}\mathrm{=}\mathrm{0,018}\)

14

0

26

\({\varepsilon }_{v\text{2}}\mathrm{=}\mathrm{0,045}\)

30

\({\varepsilon }_{v\text{2}}^{p}\mathrm{=}\mathrm{0,03667}\)

40

\({\varepsilon }_{v\text{3}}\mathrm{=}\mathrm{0,06}\)

Table 1.2-1 : imposed volume deformation.

1.3. Initial conditions#

All stress and strain components are zero at the start of loading.