Reference problem ===================== Material properties ---------------------- * * *Elastic*: :math:`E=3000\mathrm{MPa}` Young's module :math:`\nu =\mathrm{0,25}` Poisson's ratio *DRUCK_PRAGER**linear (A modeling) :* :math:`\alpha =\mathrm{0,20}` Pressure dependence coefficient :math:`{p}_{\mathrm{ultm}}=\mathrm{0,04}` Ultimate cumulative plastic deformation :math:`{\sigma }_{Y}=6\mathrm{MPa}` Plastic constraint :math:`h=100\mathrm{MPa}` Work hardening module *DRUCK_PRAGER**parabolic (B modeling) :* :math:`\alpha =\mathrm{0,20}` Pressure dependence coefficient :math:`{p}_{\mathrm{ultm}}=\mathrm{0,04}` Ultimate cumulative plastic deformation :math:`{\sigma }_{Y}=6\mathrm{MPa}` Plastic constraint :math:`{\sigma }_{Y}^{\mathrm{ult}}=10\mathrm{MPa}` Ultimate plastic constraint Loads and boundary conditions ------------------------------------- Volume deformation :math:`{\varepsilon }_{v}=\text{tr}(\varepsilon )` is imposed. The loading is not monotonic: we first charge up to the volume deformation :math:`{\varepsilon }_{v\text{1}}`, by exceeding the plastification threshold, then we discharge at a zero deformation level; then we charge again at the deformation :math:`{\varepsilon }_{v\text{2}}`, thus exceeding the ultimate cumulative plastic deformation :math:`{p}_{\mathrm{ultm}}`, thus exceeding the ultimate cumulative plastic deformation, beyond which we find perfect plasticity; we discharge again at zero stress (deformation equal to the plastic deformation), thus exceeding the ultimate cumulative plastic deformation, beyond which perfect plasticity is restored; we discharge again at zero stress (deformation equal to the plastic deformation) :math:`{\varepsilon }_{v\text{2}}^{p}`) and recharging is carried out by plasticizing subsequently until deformation :math:`{\varepsilon }_{v\text{3}}`. The loading time (see) is fictional because plastic laws are independent of time. .. csv-table:: ":math:`t` "," :math:`{\varepsilon }_{v}`" "0", "0" "10"," :math:`{\varepsilon }_{v\text{1}}\mathrm{=}\mathrm{0,018}`" "14", "0" "26"," :math:`{\varepsilon }_{v\text{2}}\mathrm{=}\mathrm{0,045}`" "30"," :math:`{\varepsilon }_{v\text{2}}^{p}\mathrm{=}\mathrm{0,03667}`" "40"," :math:`{\varepsilon }_{v\text{3}}\mathrm{=}\mathrm{0,06}`" **Table** 1.2-1 **: imposed volume deformation.** Initial conditions -------------------- All stress and strain components are zero at the start of loading.