1. Reference problem#

1.1. Geometry#

The geometry is chosen deliberately simple, to translate a state of stress and homogeneous deformation, as is the case in uniaxial creep. This is a volume element represented by a cube with side \(3\mathrm{mm}\). The modeling is solid and the creep takes place under imposed stress.

1.2. Material properties#

The characteristics are as follows:

Keyword ELAS:

  • \(\mathit{YOUNG}\mathrm{=}150000.0\mathit{MPa}\)

  • \(\mathrm{NU}=0.30\)

Keyword VENDOCHAB:

  • \({S}_{\mathrm{VP}}=0.\)

  • \(\mathrm{SEDVP1}=0.\)

  • \(\mathrm{SEDVP2}=0.\)

  • \({N}_{\mathrm{VP}}=12.\)

  • \({M}_{\mathrm{VP}}=9.\)

  • \({K}_{\mathrm{VP}}=2110.\)

  • \({A}_{D}=3191.\)

  • \({R}_{D}=6.3\)

  • \({K}_{D}=14\)

1.3. Boundary conditions and loads#

\(\mathrm{DZ}=0\) on the bottom side (\(Z=0\))

\(\mathrm{DY}=0\) on the left side (\(Y=0\))

\(\mathrm{DX}=0\) on the back side (\(X=0\))

Pressure of \(200\mathrm{MPa}\) imposed on the upper surface, such as:

\(P=0\) to \(t=\mathrm{0s}\)

\(P=200\mathrm{MPa}\) to \(t=\mathrm{0.1s}\)

\(P=200\mathrm{MPa}\) to \(t\mathrm{=}2.5{10}^{6}s\)

This corresponds to a uniaxial creep test under a constant loading of \(200\mathit{MPa}\).

1.4. Initial conditions#

Zero stresses and deformations.