3. Modeling A#

3.1. Characteristics of modeling#

The discretization in time is quite fine:

(JUSQU_A = 2, NOMBRE = 10),

(JUSQU_A = 2., NOMBRE = 10),

(JUSQU_A = 20., NOMBRE = 10),

(JUSQU_A = 200., NOMBRE = 10),

(JUSQU_A = 2000., NOMBRE = 10),

(JUSQU_A = 20000., NOMBRE = 10),

(JUSQU_A = 200,000., NOMBRE = 10),

(JUSQU_A = 1000000., NOMBRE = 30),

(JUSQU_A = 1600000., NOMBRE = 30),

(JUSQU_A = 1700000., NOMBRE = 40),

(JUSQU_A = 1800000., NOMBRE = 40),

(JUSQU_A = 1900000., NOMBRE = 40),

(JUSQU_A = 2000000., NOMBRE = 40),

(JUSQU_A = 2100000., NOMBRE = 40),

(JUSQU_A = 2200000., NOMBRE = 40),

(JUSQU_A = 2300000., NOMBRE = 40),

(JUSQU_A = 2400000., NOMBRE = 40),

(JUSQU_A = 2500000., NOMBRE = 40),

3.2. Characteristics of the mesh#

Number of knots: 8

Number of stitches: 1 (HEXA8)

3.3. Tested sizes and results#

Evolution of the damage variable, \(D\), as a function of time. This value is tested at various times:

Instant

Reference

520000

1.52596E-02

1000000

3.30676E-02

2000000

9.9465369E-02

2250000

1.37520763E-01

2500000

2.66018229E-01

Evolution of the viscoplastic isotropic work hardening variable, \(r\), as a function of time. This value is tested at various times:

Instant

Reference

520000

2.300147E-03

1000000

3.179469E-03

2000000

4.95103E-03

2250000

5.592847E-03

2500000

6.99749E-03

3.4. notes#

The difference observed on \(D\) for \(t=2.5{10}^{6}s\) is due to the very high non-linearity of the evolution of the damage variable.