3. Modeling A#
3.1. Characteristics of modeling#
The discretization in time is quite fine:
(JUSQU_A = 2, NOMBRE = 10),
(JUSQU_A = 2., NOMBRE = 10),
(JUSQU_A = 20., NOMBRE = 10),
(JUSQU_A = 200., NOMBRE = 10),
(JUSQU_A = 2000., NOMBRE = 10),
(JUSQU_A = 20000., NOMBRE = 10),
(JUSQU_A = 200,000., NOMBRE = 10),
(JUSQU_A = 1000000., NOMBRE = 30),
(JUSQU_A = 1600000., NOMBRE = 30),
(JUSQU_A = 1700000., NOMBRE = 40),
(JUSQU_A = 1800000., NOMBRE = 40),
(JUSQU_A = 1900000., NOMBRE = 40),
(JUSQU_A = 2000000., NOMBRE = 40),
(JUSQU_A = 2100000., NOMBRE = 40),
(JUSQU_A = 2200000., NOMBRE = 40),
(JUSQU_A = 2300000., NOMBRE = 40),
(JUSQU_A = 2400000., NOMBRE = 40),
(JUSQU_A = 2500000., NOMBRE = 40),
3.2. Characteristics of the mesh#
Number of knots: 8
Number of stitches: 1 (HEXA8)
3.3. Tested sizes and results#
Evolution of the damage variable, \(D\), as a function of time. This value is tested at various times:
Instant |
Reference |
520000 |
1.52596E-02 |
1000000 |
3.30676E-02 |
2000000 |
9.9465369E-02 |
2250000 |
1.37520763E-01 |
2500000 |
2.66018229E-01 |
Evolution of the viscoplastic isotropic work hardening variable, \(r\), as a function of time. This value is tested at various times:
Instant |
Reference |
520000 |
2.300147E-03 |
1000000 |
3.179469E-03 |
2000000 |
4.95103E-03 |
2250000 |
5.592847E-03 |
2500000 |
6.99749E-03 |
3.4. notes#
The difference observed on \(D\) for \(t=2.5{10}^{6}s\) is due to the very high non-linearity of the evolution of the damage variable.