Reference problem ===================== Geometry --------- The geometry is chosen deliberately simple, to translate a state of stress and homogeneous deformation, as is the case in uniaxial creep. This is a volume element represented by a cube with side :math:`3\mathrm{mm}`. The modeling is solid and the creep takes place under imposed stress. Material properties ---------------------- The characteristics are as follows: Keyword ELAS: * :math:`\mathit{YOUNG}\mathrm{=}150000.0\mathit{MPa}` * :math:`\mathrm{NU}=0.30` Keyword VENDOCHAB: * :math:`{S}_{\mathrm{VP}}=0.` * :math:`\mathrm{SEDVP1}=0.` * :math:`\mathrm{SEDVP2}=0.` * :math:`{N}_{\mathrm{VP}}=12.` * :math:`{M}_{\mathrm{VP}}=9.` * :math:`{K}_{\mathrm{VP}}=2110.` * :math:`{A}_{D}=3191.` * :math:`{R}_{D}=6.3` * :math:`{K}_{D}=14` Boundary conditions and loads ------------------------------------- :math:`\mathrm{DZ}=0` on the bottom side (:math:`Z=0`) :math:`\mathrm{DY}=0` on the left side (:math:`Y=0`) :math:`\mathrm{DX}=0` on the back side (:math:`X=0`) Pressure of :math:`200\mathrm{MPa}` imposed on the upper surface, such as: :math:`P=0` to :math:`t=\mathrm{0s}` :math:`P=200\mathrm{MPa}` to :math:`t=\mathrm{0.1s}` :math:`P=200\mathrm{MPa}` to :math:`t\mathrm{=}2.5{10}^{6}s` This corresponds to a uniaxial creep test under a constant loading of :math:`200\mathit{MPa}`. Initial conditions -------------------- Zero stresses and deformations.