Modeling A ============== Characteristics of modeling ----------------------------------- The discretization in time is quite fine: .. code-block:: text (JUSQU_A = 2, NOMBRE = 10), (JUSQU_A = 2., NOMBRE = 10), (JUSQU_A = 20., NOMBRE = 10), (JUSQU_A = 200., NOMBRE = 10), (JUSQU_A = 2000., NOMBRE = 10), (JUSQU_A = 20000., NOMBRE = 10), (JUSQU_A = 200,000., NOMBRE = 10), (JUSQU_A = 1000000., NOMBRE = 30), (JUSQU_A = 1600000., NOMBRE = 30), (JUSQU_A = 1700000., NOMBRE = 40), (JUSQU_A = 1800000., NOMBRE = 40), (JUSQU_A = 1900000., NOMBRE = 40), (JUSQU_A = 2000000., NOMBRE = 40), (JUSQU_A = 2100000., NOMBRE = 40), (JUSQU_A = 2200000., NOMBRE = 40), (JUSQU_A = 2300000., NOMBRE = 40), (JUSQU_A = 2400000., NOMBRE = 40), (JUSQU_A = 2500000., NOMBRE = 40), Characteristics of the mesh ---------------------------- Number of knots: 8 Number of stitches: 1 (HEXA8) Tested sizes and results ------------------------------ Evolution of the damage variable, :math:`D`, as a function of time. This value is tested at various times: .. csv-table:: "**Instant**", "**Reference**" "520000", "1.52596E-02" "1000000", "3.30676E-02" "2000000", "9.9465369E-02" "2250000", "1.37520763E-01" "2500000", "2.66018229E-01" Evolution of the viscoplastic isotropic work hardening variable, :math:`r`, as a function of time. This value is tested at various times: .. csv-table:: "**Instant**", "**Reference**" "520000", "2.300147E-03" "1000000", "3.179469E-03" "2000000", "4.95103E-03" "2250000", "5.592847E-03" "2500000", "6.99749E-03" notes --------- The difference observed on :math:`D` for :math:`t=2.5{10}^{6}s` is due to the very high non-linearity of the evolution of the damage variable.