3. Modeling A#
3.1. Characteristics of modeling#
3D modeling is used.
The coefficient \({K}_{D}\) is chosen depending on the temperature and on \({\sigma }_{0}\).
T (°C) |
0 MPa |
100 MPa |
200 |
200 MPa |
900 |
14,355 |
14,855 |
15,355 |
|
1000 |
14.5 |
15 |
15.5 |
|
1025 |
14.5363 |
15.0363 |
15.5363 |
15.5363 |
1050 |
14.5725 |
15.0725 |
15.5725 |
Table 3.1-1 : K_D of modeling A
The discretization in time is quite fine:
(JUSQU_A = 2, NOMBRE = 10),
(JUSQU_A = 2., NOMBRE = 10),
(JUSQU_A = 20., NOMBRE = 10),
(JUSQU_A = 200., NOMBRE = 10),
(JUSQU_A = 2000., NOMBRE = 10),
(JUSQU_A = 20000., NOMBRE = 10),
(JUSQU_A = 200,000., NOMBRE = 10),
(JUSQU_A = 1000000., NOMBRE = 30),
(JUSQU_A = 1600000., NOMBRE = 30),
(JUSQU_A = 1700000., NOMBRE = 40),
(JUSQU_A = 1800000., NOMBRE = 40),
(JUSQU_A = 1900000., NOMBRE = 40),
(JUSQU_A = 2000000., NOMBRE = 40),
(JUSQU_A = 2100000., NOMBRE = 40),
(JUSQU_A = 2200000., NOMBRE = 40),
(JUSQU_A = 2300000., NOMBRE = 40),
(JUSQU_A = 2400000., NOMBRE = 40),
(JUSQU_A = 2500000., NOMBRE = 40),
3.2. Characteristics of the mesh#
It is chosen to represent the cylindrical test piece by a block in order to be able to perform a calculation on a single element. The modeling has 3 planes of symmetry
Number of knots: 8
Number of stitches: 1 (HEXA8)

Figure 3.2-1: Modeling A mesh
3.3. Tested sizes and results#
Two calculations are performed, the first with an explicit integration algorithm (ALGO_INTE =” RUNGE_KUTTA “), the second with an implicit integration algorithm (ALGO_INTE =” NEWTON”).
Calculation in explicit resolution:
Evolution of the constraint, \({\mathrm{\sigma }}_{0}\), as a function of time. This value is tested at various times:
Instant |
Reference Type |
Reference |
Tolerance (%) |
20 |
“ANALYTIQUE” |
252.76091 |
0.5 |
2000 |
“ANALYTIQUE” |
164.261 |
0.5 |
200000 |
“ANALYTIQUE” |
101.596 |
0.5 |
1000000 |
“ANALYTIQUE” |
75.97849999999999997 |
0.5 |
1600000 |
“ANALYTIQUE” |
55.54209999999999998 |
10.0 |
Table 3.3-1 : Results of modeling A
Evolution of the damage variable, \(D\) as a function of time. This value is tested at various times depending on the modeling:
Instant |
Reference Type |
Reference |
Tolerance (%) |
20 |
“ANALYTIQUE” |
2.3168400000000001E-4 |
0.5 |
2000 |
“ANALYTIQUE” |
2.77144E-3 |
0.5 |
200000 |
“ANALYTIQUE” |
0.032255100000000002 |
0.5 |
1000000 |
“ANALYTIQUE” |
0.110134 |
1.0 |
1600000 |
“ANALYTIQUE” |
0.28131600000000001 |
10.0 |
Table 3.3-2 : Results of modeling A
Evolution of the viscoplastic isotropic work hardening variable, \(r\), as a function of time. This value is tested at various times:
Instant |
Reference Type |
Reference |
Tolerance (%) |
20 |
“ANALYTIQUE” |
1.6445100000000001E-3 |
0.5 |
2000 |
“ANALYTIQUE” |
2.2312600000000001E-3 |
0.5 |
200000 |
“ANALYTIQUE” |
2.6251500000000001E-3 |
0.5 |
1000000 |
“ANALYTIQUE” |
2.747799999999999999E-3 |
0.5 |
1600000 |
“ANALYTIQUE” |
2.79276E-3 |
0.5 |
Table 3.3-3 : Results of modeling A
Evolution of the viscoplastic isotropic work hardening variable, \(p\), as a function of time. This value is tested at various times:
Instant |
Reference Type |
Reference |
Tolerance (%) |
20 |
“ANALYTIQUE” |
1.644569999999999999E-3 |
0.5 |
2000 |
“ANALYTIQUE” |
2.231879999999999999E-3 |
0.5 |
200000 |
“ANALYTIQUE” |
2.6301200000000001E-3 |
0.5 |
1000000 |
“ANALYTIQUE” |
2.7607899999999999E-3 |
0.5 |
1600000 |
“ANALYTIQUE” |
2.814779999999999998E-3 |
0.5 |
Table 3.3-4 : Results of modeling A
Calculation in resolution implicit :
Evolution of the constraint, \({\sigma }_{0}\), as a function of time. This value is tested at various times:
Instant |
Reference Type |
Reference |
Tolerance (%) |
20 |
“ANALYTIQUE” |
252.76091 |
2.5 |
2000 |
“ANALYTIQUE” |
164.261 |
2.5 |
200000 |
“ANALYTIQUE” |
101.596 |
2.5 |
Table 3.3-5: Results of modeling A
Evolution of the damage variable, \(D\) as a function of time. This value is tested at various times depending on the modeling:
Instant |
Reference Type |
Reference |
Tolerance (%) |
20 |
“ANALYTIQUE” |
2.3168400000000001E-4 |
3.5 |
2000 |
“ANALYTIQUE” |
2.77144E-3 |
4.0 |
200000 |
“ANALYTIQUE” |
0.032255100000000002 |
7.0 |
Table 3.3-6: Results of modeling A
Evolution of the viscoplastic isotropic work hardening variable, \(r\), as a function of time. This value is tested at various times:
Instant |
Reference Type |
Reference |
Tolerance (%) |
20 |
“ANALYTIQUE” |
1.6445100000000001E-3 |
2.5 |
2000 |
“ANALYTIQUE” |
2.2312600000000001E-3 |
1.0 |
200000 |
“ANALYTIQUE” |
2.6251500000000001E-3 |
1.0 |
Table 3.3-7: Results of modeling A
Evolution of the viscoplastic isotropic work hardening variable, \(p\), as a function of time. This value is tested at various times:
Instant |
Reference Type |
Reference |
Tolerance (%) |
20 |
“ANALYTIQUE” |
1.644569999999999999E-3 |
2.5 |
2000 |
“ANALYTIQUE” |
2.231879999999999999E-3 |
1.0 |
200000 |
“ANALYTIQUE” |
2.6301200000000001E-3 |
0.5 |
Table 3.3-8: Results of modeling A
Note: This calculation does not converge beyond the instant 200000.