2. Reference solution#

2.1. Calculation method used for the reference solution#

The results considered to be reference were obtained by SAMCEF using 60 increments for each loading step. The characteristics of the various resolution methods are as follows:

A

Using the elastic matrix.

B

Using the tangent matrix; this is only reevaluated at the first iteration of each increment (REAC_INCR = 1 and REAC_ITER = 0). It’s the modified Newton method.

C

Using the tangent matrix; this is reevaluated at each iteration of each increment (REAC_INCR = 1 and REAC_ITER = 1). It’s the classical Newton method.

2.2. Benchmark results#

Results achieved with 60 increments for each loading step

Element 1

Element 2

Element 3

Force

\({\sigma }^{\mathrm{xx}}\)

\({\sigma }^{\mathrm{yy}}\)

\({\sigma }^{\mathrm{xx}}\)

\({\sigma }^{\mathrm{yy}}\)

\({\sigma }^{\mathrm{xx}}\)

\({\sigma }^{\mathrm{yy}}\)

3.00

1.500000D+00

6.938894D—18

9.000000D—01

—1.040834D—17

6.000000D—01

—6.938894D—18

6.00

3.000000D+00

4.861944D—13

1.800000D+00

—2.081668D—17

1.200000D+00

—3.469447D—18

9.00

3.147155D+00

3.199571D—01

3.511707D+00

—1.900098D—01

2.341138D+00

—1.279828D—01

12.95

3.252919D+00

5.950074D—01

5.814267D+00

—3.523377D—01

3.878832D+00

—2.380030D—01

15.00

3.213822D+00

4.873069D—01

6.017834D+00

3.174572D—02

5.768340D+00

—5.231355D—01

16.93

3.2092970D+00

4.753345D—01

6.149462D+00

3.048490D—01

7.571241D+00

—7.863557D—01

2.3. Uncertainty about the solution#

Uncertainty less than \(\text{1 \%}\).

2.4. Bibliographical references#

  1. Fundamental tests for two and three dimensional, small strain, elastoplastic finite element analysis, 1987, NAFEMS