3. Modeling A#
3.1. Characteristics of modeling A#
Using QUAD4 elements
Modeling in plane constraints: C_ PLAN
Loading and boundary conditions are modelled by:
DDL_IMPO: (Node NO1 DX = 0, DY = 0)
(Node NO2 DY = 0)
(Knot NO4 DX = 0)
forces imposed on nodes \(\mathrm{NO2}\) and \(\mathrm{NO3}\).
3.2. Characteristics of the mesh#
Number of knots: 4
Number of meshes and types: 3 MECPQU4
3.3. Tested sizes and results#
Identification |
Instant |
Reference |
Aster |
% difference |
|
\(\mathit{SIXX}\) (mesh 1) |
1 |
1,500000E+00 |
1,500000E+00 |
0 |
|
\(\mathit{SIYY}\) (mesh 1) |
1 |
6,938894E—18 |
1,291047E—14 |
0 |
|
\(\mathit{SIXX}\) (mesh 2) |
1 |
9,000000E—01 |
9,000000E—01 |
0 |
|
\(\mathit{SIYY}\) (mesh 2) |
1 |
—1.040834E—17 |
—1.509903E—14 |
0 |
|
\(\mathit{SIXX}\) (mesh 3) |
1 |
6,000000E—01 |
6,000000E—01 |
0 |
|
\(\mathit{SIYY}\) (mesh 3) |
1 |
—6,938894E—18 |
—2,107830E—14 |
0 |
|
\(\mathit{SIXX}\) (mesh 1) |
2 |
3,000000E+00 |
3,000000E+00 |
0 |
|
\(\mathit{SIYY}\) (mesh 1) |
2 |
4.861944E—13 |
1.359551E—13 |
0 |
|
\(\mathit{SIXX}\) (mesh 2) |
2 |
1,800000E+00 |
1,800000E+00 |
0 |
|
\(\mathit{SIYY}\) (mesh 2) |
2 |
—2.081668E—17 |
—1.093097E—13 |
0 |
|
\(\mathit{SIXX}\) (mesh 3) |
2 |
1,200000E+00 |
1,200000E+00 |
0 |
|
\(\mathit{SIYY}\) (mesh 3) |
2 |
—3,469447E—18 |
—1,007126E—13 |
0 |
|
\(\mathit{SIXX}\) (mesh 1) |
3 |
3,147155E+00 |
3,145788E+00 |
—0,043 |
|
\(\mathit{SIYY}\) (mesh 1) |
3 |
3,199571E—01 |
3,167040E—01 |
—1,017 |
|
\(\mathit{SIXX}\) (mesh 2) |
3 |
3.511707E+00 |
3.512527E+00 |
0.023 |
|
\(\mathit{SIYY}\) (mesh 2) |
3 |
—1,900098E—01 |
—1,900224E—01 |
,007 |
|
\(\mathit{SIXX}\) (mesh 3) |
3 |
2.341138E+00 |
2.341685E+00 |
0.023 |
|
\(\mathit{SIYY}\) (mesh 3) |
3 |
—1,279828E—01 |
—1,266816E—01 |
—1,017 |
|
\(\mathit{SIXX}\) (mesh 1) |
4 |
3.252919E+00 |
3.250728E+00 |
—0.067 |
|
\(\mathit{SIYY}\) (mesh 1) |
4 |
5,950074E—01 |
5,887464E—01 |
—1,052 |
|
\(\mathit{SIXX}\) (mesh 2) |
4 |
5,814267E+00 |
5,816159E+00 |
0.033 |
|
\(\mathit{SIYY}\) (mesh 2) |
4 |
—3.523377E—01 |
—3.521695E—01 |
—0.048 |
|
\(\mathit{SIXX}\) (mesh 3) |
4 |
3.878832E+00 |
3.882391E+00 |
0.092 |
|
\(\mathit{SIYY}\) (mesh 3) |
4 |
—2.380030E—01 |
—2.364650E—01 |
—0.646 |
|
\(\mathit{SIXX}\) (mesh 1) |
5 |
3,213822E+00 |
3,214367E+00 |
0.017 |
|
\(\mathit{SIYY}\) (mesh 1) |
5 |
4.873069E—01 |
4.887527E—01 |
0.297 |
|
\(\mathit{SIXX}\) (mesh 2) |
5 |
6.017834E+00 |
6.015985E+00 |
—0.031 |
|
\(\mathit{SIYY}\) (mesh 2) |
5 |
3,174572E—02 |
3,174572E—02 |
3,209818E—02 |
1,11 |
\(\mathit{SIXX}\) (mesh 3) |
5 |
5,768340E+00 |
5,769681E+00 |
0.023 |
|
\(\mathit{SIYY}\) (mesh 3) |
5 |
—5,231355E—01 |
—5,207413E—01 |
—0,458 |
|
\(\mathit{SIXX}\) (mesh 1) |
6 |
3.209297E+00 |
3.210194E+00 |
0.028 |
|
\(\mathit{SIYY}\) (mesh 1) |
6 |
4.753345E—01 |
4.777143E—01 |
0.501 |
|
\(\mathit{SIXX}\) (mesh 2) |
6 |
6,149462E+00 |
6,146791E+00 |
—0.043 |
|
\(\mathit{SIYY}\) (mesh 2) |
6 |
3.048490E—01 |
3.048490E—01 |
3.052330E—01 |
0.126 |
\(\mathit{SIXX}\) (mesh 3) |
6 |
7,571241E+00 |
7,572486E+00 |
0.016 |
|
\(\mathit{SIYY}\) (mesh 3) |
6 |
—7.863557E—01 |
—7.826545E—01 |
—0.471 |
—0.471 |
3.4. notes#
To obtain correct precision, a large number of increments must be imposed for each loading step (60 increments).
The number of iterations is equal to 411.