1. Reference problem#

1.1. Geometry and boundary conditions#

In these tests, a concrete plate (\(200\mathrm{\times }200\mathrm{\times }50\mathit{mm}\)) is subjected to a loading where the main stress ratio \({\sigma }_{2}\mathrm{/}{\sigma }_{1}\) is fixed (\({\sigma }_{3}\mathrm{=}0\)). These tests are modelled in two dimensions under the condition of plane constraints (\({\sigma }_{\mathit{zz}}\mathrm{=}0\)) using a quadrangle element with 4 nodes (QUAD4).

_images/1000000000000357000001CA4236EF3D652EB857.jpg

Figure 1.1-a: 2D modeling and boundary conditions for biaxial tests

Only a quarter of the concrete plate is modelled. Thus, symmetry conditions are imposed:

  • The following moves \(y\) are stuck on the bottom edge.

  • The following moves \(x\) are stuck on the left edge.

Two pressures are imposed on the free edges: \({P}_{1}\) and \({P}_{2}\). The relationship between the loads, and implicitly on the main constraints, is noted \(\omega\):

\({\mathrm{\sigma }}_{2}=\mathrm{\omega }{\mathrm{\sigma }}_{1}\) (Eq.1)

These pressures follow a linear law of evolution.

Instant

0

1

\({P}_{1}\) (\(\mathit{MPa}\))

0

30

\({P}_{2}\) (\(\mathit{MPa}\))

0

\(30\mathrm{\omega }\)

Table 1.1-1 : Evolution of pressures

1.2. Material properties#

For the MAZARS model, the following parameters were used:

Elastic behavior:

\(E\mathrm{=}\text{34}\text{000}\text{MPa},\nu \mathrm{=}0\text{.}19\)

Damaging behavior:

\({\varepsilon }_{\mathit{d0}}\mathrm{=}1\text{.}\text{1}\text{.}{\text{10}}^{\mathrm{-}3};\text{Ac}\mathrm{=}1\text{.}\text{25};\text{At}\mathrm{=}1\text{.}0;\text{Bc}\mathrm{=}\text{1965};\text{Bt}\mathrm{=}\text{9}\text{000};k\mathrm{=}0\text{.}\text{7}\)

These material parameters induce a compression limit \({f}_{c}\) of the order of \(33\mathit{MPa}\).

1.3. Initial conditions#

Néant