1. Reference problem#

1.1. Geometry#

_images/Shape1.gif
  • Size of the square: \(\mathrm{1m}\mathrm{\times }\mathrm{1m}\).

1.2. Material properties#

Elastic

    • \(E=5800.0\mathrm{E6}\mathrm{Pa}\) Young’s module

    • \(\nu =0.3\) Poisson’s Ratio

DRUCK_PRAGER with linear negative work hardening

    • \(\alpha \mathrm{=}0.33\) Pressure Dependence Coefficient

    • \({p}_{\mathrm{ultm}}=0.01\) Ultimate cumulative plastic deformation

    • \({\sigma }^{Y}=2.57\mathrm{E6}\mathrm{Pa}\) Plastic constraint

    • \(h=-2.\mathrm{E8}\mathrm{Pa}\) Work hardening module

DRUCK_PRAGER with parabolic negative work hardening

    • \(\alpha =0.33\) Pressure Dependence Coefficient

    • \({p}_{\mathrm{ultm}}=0.01\) Ultimate cumulative plastic deformation

    • \({\sigma }^{Y}=2.57\mathrm{E6}\mathrm{Pa}\) Plastic constraint

    • \({\sigma }_{\mathrm{ultm}}^{Y}=0.57\mathrm{E6}\mathrm{Pa}\) Ultimate constraint

1.3. Boundary conditions and loads#

The boundary conditions and loads applied are as follows:

Imposed loads: loads are constant \(t\mathrm{\in }\text{]}\mathrm{1,2}\mathrm{.}\text{]}\)

  • Side \(\mathrm{BC}\) \(p={2.10}^{6}\mathrm{Pa}\)

Travel imposed on:

  • Side \(\mathrm{AB}\) \(\mathrm{DY}=0.\)

  • Side \(\mathrm{DA}\) \(\mathrm{DX}=0.\)

  • The movements vary over \(\mathrm{CD}\) gradually, over the interval \(t\mathrm{\in }\text{]}\mathrm{1,2}\mathrm{.}\text{]}\), following a ramp, as in the figure below: \(t=1.\) \(\mathrm{DY}=0.\)

\(t=2.\) \(\mathrm{DY}=-0.015\)

_images/Shape2.gif

1.4. Initial conditions#

      • Initial conditions \((\mathrm{Pa})\)

\(\mathrm{SIXX}\)

\(\mathrm{SIYY}\)

\(\mathrm{SIZZ}\)

\(\mathrm{SIXY}\)

\(\mathrm{SIXZ}\)

\(\mathrm{SIYZ}\)

-2. E6

-2. E6

-2. E6

0.0

0.0

0.0

0.0

\(\mathrm{SIP}\)

\(\mathrm{M11}\)

\(\mathrm{FH11X}\)

\(\mathrm{FH11Y}\)

0.0

0.0

0.0

0.0