2. Benchmark solution#

2.1. Calculation method used for the reference solution#

  • Displacement \(\mathrm{DY}\)

The displacement \(\mathrm{DY}\) referring to point \(C\) corresponds to the imposed displacement.

\(\mathrm{DY}=-0.015(t-1)\)

  • Constraint \(\mathrm{SIXX}\)

Constraint \(\mathrm{SIXX}\) corresponds to the load applied

  • Stress \(\mathrm{SIYY}\) and cumulative plastic deformation \(\mathrm{V1}\)

The reference values for stress \(\mathrm{SIYY}\) and cumulative plastic deformation \(\mathrm{V1}\) are non-regression values.

2.2. Reference quantities#

  • Constraint \(\mathrm{SIXX}\) at point \(C\)

  • Constraint \(\mathrm{SIYY}\) at point \(C\)

  • Cumulative plastic deformation \(\mathrm{V1}\) at point \(C\)

  • Move \(\mathrm{DY}\) to point \(C\)

2.3. Benchmark result#

Grandeur

Point

\(\mathrm{Inst}\)

Reference*

Reference**

\(\mathrm{SIXX}(\mathrm{Pa})\)

\(C\)

\(2.0\)

\(-2.0\mathrm{E6}\)

\(-2.0\mathrm{E6}\)

\(\mathrm{SIYY}(\mathrm{Pa})\)

\(C\)

\(1.07\)

\(-8.69\mathrm{E6}\)

\(-8.69\mathrm{E6}\)

\(1.16\)

\(-1.39\mathrm{E7}\)

\(-1.37\mathrm{E7}\)

\(1.34\)

\(-9.90\mathrm{E6}\)

\(-9.90\mathrm{E6}\)

\(1.53\)

\(-9.91\mathrm{E6}\)

\(-9.90\mathrm{E6}\)

\(\mathrm{V1}\)

\(C\)

\(1.07\)

\(0\)

\(0\)

\(1.16\)

\(1.20E-3\)

\(1.26E-3\)

\(1.34\)

\(1.12E-2\)

\(1.12E-2\)

\(1.53\)

\(2.01E-2\)

\(2.01E-2\)

\(\mathrm{DY}(m)\)

\(C\)

\(1.07\)

\(-1.05E-3\)

\(-1.05E-3\)

\(1.16\)

\(-2.40E-3\)

\(-2.40E-3\)

\(1.34\)

\(-5.10E-3\)

\(-5.10E-3\)

\(1.53\)

\(-7.95E-3\)

\(-7.95E-3\)

linear work hardening* parabolic work hardening

2.4. Uncertainty about the solution#

  • Analytical solution for quantities \(\mathrm{DY}\) and \(\mathrm{SIXX}\)

  • Digital solution for sizes \(\mathrm{SIYY}\) and \(\mathrm{V1}\)