11. Modeling I#

11.1. Characteristics of modeling#

Plane stress modeling in plasticity using MFront (linear isotropic work hardening plasticity). The DeBorst algorithm is activated.

_images/100000000000013200000111F70B98F1C49A635E.png
  • Dirichlet condition (keyword DDL_IMPO):

  • Node \(\mathrm{N04}\), \(x=y=0\),

  • Knots \(\mathrm{N02}\), \(\mathit{NS2}\) \(x=0\).

  • Neumann condition, surface forces (keyword FORCE_CONTOUR):

  • on the faces (skin elements): (1, 2), (2, 4), (4, 3) and (3, 1).

11.2. Characteristics of the mesh#

Number of knots: 8

Number of meshes and types: 1 QUAD8, 4 SEG3

11.3. Tested sizes and results#

Following sheet 7461, we test in non-regression that the internal variables are not modified by the calculation of the energy.

Identification

Reference type

Reference value

V7 at time \(A\)

“NON_REGRESSION”

0.020547265463595

Identification

Reference type

Reference value

Tolerance

\({\sigma }_{\mathrm{xx}}\) at the moment \(A\)

“ANALYTIQUE”

1,512E+002

0.1%

\({\sigma }_{\mathrm{xy}}\) at the moment \(A\)

“ANALYTIQUE”

9,310E+001

0.1%

\({\varepsilon }_{\mathrm{xx}}\) at the moment \(A\)

“ANALYTIQUE”

1.48297E-002

0.1%

\({\varepsilon }_{\mathrm{xy}}\) at the moment \(A\)

“ANALYTIQUE”

1.36014E-002

0.1%

\({\varepsilon }_{\mathrm{xx}}^{p}\) at the moment \(B\)

“ANALYTIQUE”

1.4054E-002

1.0%

\({\varepsilon }_{\mathrm{xy}}^{p}\) at the moment \(B\)

“ANALYTIQUE”

1, 2981E-002

1.0%

\({\varepsilon }_{\mathit{xx}}\) at the moment \(B\)

“ANALYTIQUE”

3,5265E-002

1,0%

\({\varepsilon }_{\mathit{xy}}\) at the moment \(B\)

“ANALYTIQUE”

2,0471E-002

1.0%

\({\varepsilon }_{\mathrm{xx}}^{p}\) at the moment \(B\)

“ANALYTIQUE”

3,3946E-002

1.0%

\({\varepsilon }_{\mathrm{xy}}^{p}\) at the moment \(B\)

“ANALYTIQUE”

2,0250E-002

1.0%

\(p\) at the moment \(B\)

“ANALYTIQUE”

4,23293E-002

1.0%

Triaxiality rate \(\mathit{TRIAX}\) at time \(A\)

“ANALYTIQUE”

2.2800E-001

0.1%

Triaxiality rate \(\mathit{TRIAX}\) at time \(B\)

“ANALYTIQUE”

3.25349E-001

0.1%