8. F modeling#

8.1. Characteristics of modeling#

This modeling is identical to modeling A. The only difference is in the management of the time step. The time discretization chosen is minimal: \(\mathrm{0,1 };\mathrm{0,9 };\mathrm{1 };\mathrm{2 };3\).

The time step is re-cut if, at convergence, the maximum cumulative plastic deformation increment exceeds \(\mathrm{0,1}\text{\%}\).

8.2. Tested sizes and results#

Identification

Reference Type

Value

Tolerance

\({\sigma }_{\mathrm{xx}}\) at the moment \(A\)

“AUTRE_ASTER”

151.2

0.1%

\({\sigma }_{\mathrm{xy}}\) at the moment \(A\)

“AUTRE_ASTER”

93.1

0.1%

\({\varepsilon }_{\mathrm{xx}}\) at the moment \(A\)

“AUTRE_ASTER”

1.48297E-2

0.1%

\({\varepsilon }_{\mathrm{xy}}\) at the moment \(A\)

“AUTRE_ASTER”

1.36014E-2

0.1%

\(p\) at the moment \(A\)

“AUTRE_ASTER”

2.05473E-2

0.1%

\({\varepsilon }_{\mathrm{xx}}^{p}\) at the moment \(A\)

“AUTRE_ASTER”

1.4054E-2

0.1%

\({\varepsilon }_{\mathrm{xy}}^{p}\) at the moment \(A\)

“AUTRE_ASTER”

1.2981E-2

0.10%

In addition, in a second series of calculations, we test the error indicator due to the non-radiality of the load: using a rough temporal discretization, as before, we activate the subdivision of the time step if the error due to the non-radiality exceeds 2% (RESI_RADI_RELA =0.02). This test is carried out for 2 equivalent behaviors: VMIS_CINE_LINE, VMIS_ECMI_LINE.. The results are identical for both behaviors:

Identification

Reference Type

Value

Tolerance

\({\sigma }_{\mathrm{xx}}\) at the moment \(A\)

“AUTRE_ASTER”

151.2

0.1%

\({\sigma }_{\mathrm{xy}}\) at the moment \(A\)

“AUTRE_ASTER”

93.1

0.1%

\({\varepsilon }_{\mathrm{xx}}\) at the moment \(A\)

“AUTRE_ASTER”

1.48297E-2

0.1%

\({\varepsilon }_{\mathrm{xy}}\) at the moment \(A\)

“AUTRE_ASTER”

1.36014E-2

0.1%

\(p\) at the moment \(A\)

“AUTRE_ASTER”

2.05473E-2

0.1%

\({\varepsilon }_{\mathrm{xx}}^{p}\) at the moment \(A\)

“AUTRE_ASTER”

1.4054E-2

0.1%

\({\varepsilon }_{\mathrm{xy}}^{p}\) at the moment \(A\)

“AUTRE_ASTER”

1.2981E-2

0.10%

In addition, radiality loss indicators DERA_ELGA are tested:

Identification

Reference Type

Value

Tolerance

DERA_ELGA/ERR_RADIà moment 1,

“NON_REGRESSION”

0

0.00%

DERA_ELGA/ERR_RADIà the instant \(\mathrm{1,5}\) d

“NON_REGRESSION”

9.50E-003

0.00%