3. Modeling A#

3.1. Characteristics of modeling#

3D modeling

_images/100000000000029A000001E88B204A92E8483A5D.png

Loading and boundary conditions are modelled by:

  • Dirichlet condition (keyword DDL_IMPO):

  • Node \(\mathrm{N04}\), \(x=y=0\),

  • Node \(\mathrm{N08}\), \(x\mathrm{=}y\mathrm{=}z\mathrm{=}0\),

  • Node \(\mathrm{N02}\), \(x=0\),

  • Node \(\mathrm{N06}\), \(x=0\).

  • Neumann condition, surface forces (keyword FORCE_FACE):

  • on the faces (skin elements): \((\mathrm{1,}\mathrm{5,}\mathrm{6,}2)\), \((\mathrm{1,}\mathrm{5,}\mathrm{7,}3)\),, \((\mathrm{3,}\mathrm{4,}\mathrm{8,}7)\) and \((\mathrm{4,}\mathrm{8,}\mathrm{6,}2)\).

3.2. Characteristics of the mesh#

Number of knots: 8

Number of meshes and types: 1 HEXA8, 4 QUAD4

3.3. Tested sizes and results#

3.3.1. Case of VMIS_ISOT_LINE#

Identification

Reference type

Reference value

Tolerance

\({\sigma }_{\mathrm{xx}}\) at the moment \(A\)

“ANALYTIQUE”

1,512E+002

0.1%

\({\sigma }_{\mathrm{xy}}\) at the moment \(A\)

“ANALYTIQUE”

9,310E+001

0.1%

\(p\) at the moment \(A\)

“ANALYTIQUE”

2.0547E-002

0.1%

Triaxiality rate \(\mathit{TRIAX}\) at time \(A\)

“ANALYTIQUE”

2.2800E-001

0.1%

\({\varepsilon }_{\mathrm{xx}}\) at the moment \(A\)

“ANALYTIQUE”

1.48297E-002

0.1%

\({\varepsilon }_{\mathrm{xy}}\) at the moment \(A\)

“ANALYTIQUE”

1.36014E-002

0.1%

\({\varepsilon }_{\mathrm{xx}}^{p}\) at the moment \(A\)

“ANALYTIQUE”

1.40543E-002

0.1%

\({\varepsilon }_{\mathrm{xy}}^{p}\) at the moment \(A\)

“ANALYTIQUE”

1.29807E-002

0.1%

\(p\) at the moment \(B\)

“ANALYTIQUE”

4,23293E-002

1.0%

Triaxiality rate \(\mathit{TRIAX}\) at time \(B\)

“ANALYTIQUE”

3.25349E-001

0.1%

\({\varepsilon }_{\mathit{xx}}\) at the moment \(B\)

“ANALYTIQUE”

3,5265E-002

1,0%

\({\varepsilon }_{\mathit{xy}}\) at the moment \(B\)

“ANALYTIQUE”

2,0471E-002

1.0%

\({\varepsilon }_{\mathit{xx}}^{p}\) at the moment \(B\)

“ANALYTIQUE”

3,3946E-002

1.0%

\({\varepsilon }_{\mathit{xy}}^{p}\) at the moment \(B\)

“ANALYTIQUE”

2,0250E-002

1.0%

as well as the charge-discharge indicators:

Identification

Reference Type

Value

Tolerance

INDIC_ENER at the moment \(A\)

“ANALYTIQUE”

0

0.1%

INDIC_ENER at the moment \(B\)

“ANALYTIQUE”

3,26E-002

3,0%

INDIC_SEUIL at the moment \(A\)

“ANALYTIQUE”

0

0.1%

INDIC_SEUIL at the moment \(B\)

“ANALYTIQUE”

3,26E-002

3,0%

INDIC_ENER at the moment \(C\) (full discharge)

“ANALYTIQUE”

4,69E-002

3,0%

INDIC_SEUIL at time \(C\) (full discharge)

“ANALYTIQUE”

1.0

1.0%

DERA_ELNO/RADI_Và the moment 0.1

“ANALYTIQUE”

0.0

1.0%

3.3.2. Case of VMIS_ECMI_LINE#

We only calculate the energies, and we compare with case VMIS_ISOT_LINE:

Identification

Reference Type

Value

Tolerance

ETOT_ELGA/TOTALE at the moment 0.1

“AUTRE_ASTER”

1.16403E-03

0.1%

ETOT_ELGA/TOTALE at the moment 0.9

“AUTRE_ASTER”

1.84340

0.1%

ETOT_ELGA/TOTALE at the moment 2.0

“AUTRE_ASTER”

9.58487

0.1%

ETOT_ELGA/TOTALE at the moment 3.0

“AUTRE_ASTER”

9.40794

0.1%

ETOT_ELNO/TOTALE at the moment 0.1

“AUTRE_ASTER”

1.16403E-03

0.1%

ETOT_ELNO/TOTALE at the moment 0.9

“AUTRE_ASTER”

1.84340

0.1%

ETOT_ELNO/TOTALE at the moment 2.0

“AUTRE_ASTER”

9.58487

0.1%

ETOT_ELNO/TOTALE at the moment 3.0

“AUTRE_ASTER”

9.40794

0.1%

ETOT_ELEM/TOTALE at the moment 0.1

“AUTRE_ASTER”

1.16403E-03

0.1%

ETOT_ELEM/TOTALE at the moment 0.9

“AUTRE_ASTER”

1.84340

0.1%

ETOT_ELEM/TOTALE at the moment 2.0

“AUTRE_ASTER”

9.58487

0.1%

ETOT_ELEM/TOTALE at the moment 3.0

“AUTRE_ASTER”

9.40794

0.1%

ETOT_NOEU/TOTALE at the moment 3.0

“AUTRE_ASTER”

9.40650

0.1%

3.3.3. Case of DERA_ELxx#

The discharge DCHA_V and radiality loss DCHA_R indicators are tested in mesh \(\mathit{CUBE}\):

  • at the first Gauss point (DERA_ELGA),

  • at node \({N}_{2}\) (DERA_ELNO).

We test in mesh \(\mathit{CUBE}\) at Gauss point 1:

  • The discharge indicator IND_DCHA, which allows you to know if the discharge remains elastic or if there would be a risk of plastification if pure kinematic work hardening was used,

  • Indicator VAL_DCHA which indicates the proportion of criteria output.

Identification

Reference type

Value

Tolerance

DERA_ELGA

IND_DCHAà increment 10

“NON_REGRESSION”

2

0.10%

VAL_DCHAà increment 10

“NON_REGRESSION”

0.0

0.001

IND_DCHAà increment 12

“NON_REGRESSION”

-1

0.10%

VAL_DCHAà increment 12

“NON_REGRESSION”

0.0

0.001

IND_DCHAà increment 14

“NON_REGRESSION”

-2

0.10%

VAL_DCHAà increment 14

“NON_REGRESSION”

1.057898

0.10%

IND_DCHAà increment 52

“NON_REGRESSION”

-2

0.10%

VAL_DCHAà increment 52

“NON_REGRESSION”

1.057898

0.10%