1. General characteristics#
1.1. Geometry#
The geometry is identical to that of test cases SSNL119 and SDLL130 except for the longitudinal reinforcements, which are all identical here: these are four \(\mathit{HA32}\).

Figure 1.1-a: g**structure geometry**
NB: transverse reinforcements are not taken into account in the calculations.
1.2. Material properties#
For modeling A:
For concrete, Mazars’s law of behavior in its 1D version:
Elasticity part:
\(E\mathrm{=}3.72720E+10\), \(\mathit{NU}\mathrm{=}2.0E-01\), \(\mathit{RHO}\mathrm{=}2.40E+03\),
Non-linear part:
\(\mathit{AC}\mathrm{=}1.71202987\), \(\mathit{BC}\mathrm{=}2.01163780E+03\), \(\mathit{BT}\mathrm{=}1.21892353E+04\),
\(\mathit{BETA}\mathrm{=}1.10\), \(\mathit{AT}\mathrm{=}1.00\), \(\mathit{EPSD0}\mathrm{=}8.20396008E-05\),
For modeling B:
Concrete:
Young’s module: \(E\mathrm{=}37272\mathit{MPa}\)
Poisson’s ratio: \(\nu =0.2\)
Tensile elasticity threshold: \({\sigma }_{\mathrm{ft}}=3.9\mathrm{MPa}\)
Threshold of elasticity in compression: \({\sigma }_{\mathrm{fc}}=38.3\mathrm{MPa}\)
For A and B models:
ecro_line law of behavior for steel:
\(E=200000\mathrm{MPa}\), \(\nu =0.33\), \({\sigma }_{e}=400\mathrm{MPa}\), \({E}_{T}=3280\mathrm{MPa}\), \(\rho =7800\mathrm{kg}/{m}^{3}\)
Damping: Rayleigh type (\(\alpha K+\beta M\)), with \(\text{5\%}\) on modes 1 and 2.
1.3. Boundary conditions and loads#
Simple press in \(B\): \(\mathrm{dy}=0\)
Press « double » in \(A\): \(\mathrm{dx}=\mathrm{dy}=0\)
To avoid out-of-plane modes, the following degrees of freedom are blocked all over the beam: \(\mathrm{rx}=\mathrm{ry}=\mathrm{dz}=0\)
Loading: earthquake ac_s2_c_1 [Figure], in axis \(\mathit{OY}\) applied to both supports, with a signal amplification factor of 45.
Figure 1.3-a: a ac_s2_c_1 accelerogram imposed on the structure