1. Reference problem#

1.1. Geometry#

_images/1000063000001A40000012B5B1AA1C85C2E5BB2D.svg

\(\stackrel{ˉ}{\mathrm{AA}}\text{'}=\mathrm{2L}=2m\)

\(x(\mathrm{M1})=0.2m\)

\(x(\mathrm{M2})=0.8m\)

1.2. Material properties#

\(\lambda =1W/m°C\)

\(\rho {C}_{P}=1J/{m}^{3}°C\)

1.3. Boundary conditions and loads#

  • \(A:T(\mathrm{0,}t)={T}_{p}=100°C\)

For \(t>0\)

  • \(A\text{'}:T(\mathrm{2L},t)={T}_{p}=100°C\)

1.4. Initial conditions#

\(T(x,0)=0°C\) for everything \(x\)

1.5. Details concerning the models#

Discretization in time \((t)\):

Thermal shock requires « fine » discretization in time close to \(t=0\).

Since the aim of the test was to validate the various elements (different models), we chose a single discretization in time:

10

not for

\([0.,1.E-3]\)

either

\(\Delta t={10}^{–4}s\)

9

not for

\([1.E-\mathrm{3,}1.E-2]\)

either

\(\Delta t={10}^{–3}s\)

9

not for

\([1.E-\mathrm{2,}1.E-1]\)

either

\(\Delta t={10}^{–2}s\)

9

not for

\([1.E-\mathrm{1,}1.]\)

either

\(\Delta t={10}^{–1}s\)

10

not for

\([1.\mathrm{,2}\mathrm{.}]\)

either

\(\Delta t={10}^{–1}s\)

Shock is defined in two different ways:

  • for B modeling, this is a real shock (\({T}_{p}\) is discontinuous):

\(\{\begin{array}{}{T}_{p}^{\text{-}}(A)=0.\\ {T}_{p}^{\text{+}}(A)=100.\end{array}\)

  • for models \(A,C,D,E,F,G\), this is a linear ramp:

\(\{\begin{array}{}{T}_{p}{(A)}_{t=0}=0.\\ {T}_{p}{(A)}_{t={10}^{-3}}=100.\end{array}\)