Reference problem ===================== Geometry --------- .. image:: images/1000063000001A40000012B5B1AA1C85C2E5BB2D.svg :width: 287 :height: 205 .. _RefImage_1000063000001A40000012B5B1AA1C85C2E5BB2D.svg: :math:`\stackrel{ˉ}{\mathrm{AA}}\text{'}=\mathrm{2L}=2m` :math:`x(\mathrm{M1})=0.2m` :math:`x(\mathrm{M2})=0.8m` Material properties ----------------------- :math:`\lambda =1W/m°C` :math:`\rho {C}_{P}=1J/{m}^{3}°C` Boundary conditions and loads ------------------------------------- * :math:`A:T(\mathrm{0,}t)={T}_{p}=100°C` For :math:`t>0` * :math:`A\text{'}:T(\mathrm{2L},t)={T}_{p}=100°C` Initial conditions -------------------- :math:`T(x,0)=0°C` for everything :math:`x` Details concerning the models ------------------------ Discretization in time :math:`(t)`: Thermal shock requires "fine" discretization in time close to :math:`t=0`. Since the aim of the test was to validate the various elements (different models), we chose a single discretization in time: .. csv-table:: "10", "not for", ":math:`[0.,1.E-3]` ", "either", ":math:`\Delta t={10}^{–4}s`" "9", "not for", ":math:`[1.E-\mathrm{3,}1.E-2]` ", "either", ":math:`\Delta t={10}^{–3}s`" "9", "not for", ":math:`[1.E-\mathrm{2,}1.E-1]` ", "either", ":math:`\Delta t={10}^{–2}s`" "9", "not for", ":math:`[1.E-\mathrm{1,}1.]` ", "either", ":math:`\Delta t={10}^{–1}s`" "10", "not for", ":math:`[1.\mathrm{,2}\mathrm{.}]` ", "either", ":math:`\Delta t={10}^{–1}s`" Shock is defined in two different ways: * for B modeling, this is a real shock (:math:`{T}_{p}` is discontinuous): :math:`\{\begin{array}{}{T}_{p}^{\text{-}}(A)=0.\\ {T}_{p}^{\text{+}}(A)=100.\end{array}` * for models :math:`A,C,D,E,F,G`, this is a linear ramp: :math:`\{\begin{array}{}{T}_{p}{(A)}_{t=0}=0.\\ {T}_{p}{(A)}_{t={10}^{-3}}=100.\end{array}`