2. Benchmark solution#

2.1. Calculation method used for the reference solution#

\(\frac{T(x,t)-{T}_{p}}{{T}_{0}-{T}_{p}}=\frac{4}{\pi }\sum _{n=1}^{\infty }\frac{1}{n}\mathrm{sin}(\frac{n\pi x}{\mathrm{2L}})\mathrm{exp}\left\{-{(\frac{n\pi }{\mathrm{2L}})}^{2}\mathrm{.}\frac{\lambda }{\rho {C}_{p}}\mathrm{.}t\right\}\)

\(x=\)

abscissa

\(t=\)

Time

\({T}_{0}=\)

Initial temperature

\({T}_{p}=\)

Imposed temperature

\(n=\)

\(\mathrm{1,3}\mathrm{,5},\mathrm{...}\)

2.2. Benchmark results#

Temperatures at points \(\mathrm{M1}\) (\(x=0.2\)) and \(\mathrm{M2}\) (\(x=0.8\)), and at various times (\(t=0.1,0.2,0.7\) and \(2.0\)).

The reference values are those given in guide VPCS.

2.3. Uncertainty about the solution#

Digital series.

2.4. Bibliographical references#

  • J.F. SACCADURA: Introduction to heat transfers, Paris, Technique and documentation (1982).