2. Benchmark solution#
2.1. Benchmark results#
2.1.1. Calculation of stress intensity factors#
The reference solution for an opening crack of depth a in a plate of thickness \(W\) stressed in pure \(I\) mode (force \(\sigma\) along the axis \(y\)) is as follows:
\({K}_{I}\mathrm{=}Y\sigma \sqrt{a}\), with \(Y\mathrm{=}1.99\mathrm{-}0.41\frac{a}{W}+18.7{(\frac{a}{W})}^{2}\mathrm{-}38.48{(\frac{a}{W})}^{3}+53.85{(\frac{a}{W})}^{4}\)
Numerical application: for a crack \(15\mathit{mm}\) deep (\(W\mathrm{=}72\mathit{mm}\)) and the load \({f}^{0}\), we get \({K}_{I}\mathrm{=}\mathrm{2,874}\mathit{MPa.}\sqrt{\mathit{mm}}\).
2.1.2. Calculation of the stresses around the crack bottom#
The analytical solution for the stress on a circle with radius \(r\) around the crack bottom, obtained for a crack in an infinite environment, is as follows:
\({\sigma }_{\theta \theta }\mathrm{=}\frac{{K}_{I}}{4\sqrt{2\pi r}}(3\mathrm{cos}\frac{\theta }{2}+\mathrm{cos}\frac{3\theta }{2})\)
Digital application: for loading \({f}^{0}\) and for radius \(r\mathrm{=}{R}_{\mathit{AMORC}}\mathrm{=}\mathrm{0,046}\mathit{mm}\), we get:
\(\theta \mathrm{=}0\): \({\sigma }_{\theta \theta }\mathrm{=}53.5\mathit{MPa}\); \(\theta \mathrm{=}\pi \mathrm{/}2\): \({\sigma }_{\theta \theta }\mathrm{=}18.9\mathit{MPa}\)
2.1.3. Calculation of the priming factor#
The priming factor associated with the geometric singularity in \(P\) is calculated analytically using the procedure prescribed in RCC -M [3]. All the moments provided are considered to be local extremes and are therefore retained in the calculation.
We note \({s}^{0}\) the value of \({\sigma }_{\theta \theta }\) taken at a radius \(r\) from the bottom of the crack, at an angle \(\theta\) given for loading \({f}^{0}\). We can then build the table of the amplitudes of variation of \({\sigma }_{\theta \theta }\) for all the possible combinations:
Transitional 1 |
Transitional 2 |
||||||
\({\mathrm{Nb}}_{\mathrm{occur}}=i\) |
\({\mathrm{Nb}}_{\mathrm{occur}}=j\) |
||||||
\(t=0\) |
\(t=1\) |
\(t=0\) |
\(t=1\) |
\(t=2\) |
|||
Transitional 1 |
\({\mathit{Nb}}_{\mathit{occur}}\mathrm{=}i\) |
\(t=0\) |
\(100s°\) |
||||
\(t=1\) |
\(90s°\) |
\(10s°\) |
\(50s°\) |
||||
Transitional 2 |
\({\mathrm{Nb}}_{\mathrm{occur}}=j\) |
\(t=0\) |
\(100s°\) |
\(40s°\) |
|||
\(t=1\) |
\(60s°\) |
||||||
\(t=2\) |
Taking into account the load ratio \(R\) of each combination makes it possible to calculate the amplitude of variation of the effective stresses \(\Delta {\sigma }_{\mathit{eff}}\):
Transitional 1 |
Transitional 2 |
||||||
\({\mathrm{Nb}}_{\mathrm{occur}}=i\) |
\({\mathrm{Nb}}_{\mathrm{occur}}=j\) |
||||||
\(t=0\) |
\(t=1\) |
\(t=0\) |
\(t=1\) |
\(t=2\) |
|||
Transitional 1 |
\({\mathrm{Nb}}_{\mathrm{occur}}=i\) |
\(t=0\) |
\(100s°\) |
||||
\(t=1\) |
\(\mathrm{95,6}s°\) |
\(\mathrm{22,6}s°\) |
\(\mathrm{72,1}s°\) |
||||
Transitional 2 |
\({\mathrm{Nb}}_{\mathrm{occur}}=j\) |
\(t=0\) |
\(\mathrm{105,9}s°\) |
\(\mathrm{45,6}s°\) |
|||
\(t=1\) |
\(\mathrm{83,6}s°\) |
||||||
\(t=2\) |
The calculation of the priming factor \(\mathrm{FA}\) is carried out according to an iterative process:
identification of the transient number of non-zero occurrences leading to the maximum of
;
calculation of the associated elementary priming factor, using the law of fatigue;
updating the number of occurrences of the processed combination.
Two cases are studied in succession with the numbers of occurrences of the following two transients: \(i=j=1\) and \(i=\mathrm{1 };j=2\). We denote \({N}_{\mathrm{kl}-\mathrm{mn}}\) the number of cycles admissible for the combination of the \(l\) -th time step of the -th time step, the \(k\) -th transitory and the \(n\) -th time step of the \(m\) -th transient (calculated from
of this combination and of the law of fatigue).
1st case:
2nd case:
Numerical application: for modeling A of this test case, we assume that \(s°=1\). So we have:
\({\mathrm{FA}}_{1}=\mathrm{2,005}{.10}^{-\mathrm{10 }}\); F \({A}_{2}=\mathrm{2,710}{.10}^{-10}\)
For B modeling, the value of \(s°\) depends on the angle
, and can be calculated using the formula in paragraph 2.1.2.
:
, \({\mathrm{FA}}_{1}=\mathrm{0,607}\); \({\mathrm{FA}}_{2}=\mathrm{0,819}\)
:
, \({\mathrm{FA}}_{1}=\mathrm{2,01}{.10}^{-3}\); \({\mathrm{FA}}_{2}=\mathrm{2,72}{.10}^{-3}\)
2.2. Bibliographical references#
W.F. BROWN, J.E. STRAWLEY: « Plane Strain Crack Toughness Testing of High Strength Material », American Society of Testing and Materials, STP 410
J.B. LEBLOND: « Mechanics of fragile and ductile fracture », Lavoisier, Paris, 2003.
RCC -M: « Mechanics of fragile and ductile fracture », Lavoisier, Paris, 2003.