1. Reference problem#

1.1. Geometry#

The global frame of reference is frame \((A,X,Y,Z)\). In this coordinate system the coordinates of the nodes are:

\(A(0.,0.,0.)\)

\(B(3.,1.,0.)\)

\(C(2.,3.,0.)\)

\(D(3.,1.,-1)\)

We will study the behavior of the tetrahedron \(\mathrm{ABCD}\) whose material properties are defined in a local coordinate system \((A,x,y,z)\) obtained by rotating the global coordinate system according to nautical angles \((\alpha =30°,\beta =20°,\gamma =10°)\).

1.2. Material properties#

The materials used are orthotropic and transverse isotropic. In order to validate orthotropic deformations of thermal origin, a thermomechanical calculation is also carried out.

We adopt the terminology convention used in Code_Aster. Let the suffixes \(L\), \(T\) and \(N\) mean Longitudinal, Transverse, and Normal.

The units are not specified.

_images/Object_1.svg

(We know that

_images/Object_2.svg

,

either

_images/Object_3.svg

For transverse isotropy, we keep the same values knowing that:

_images/Object_4.svg

It should be noted that these coefficients are defined in a local coordinate system \((A,L,T,N)\) rotated with the nautical angles \((30°,20°,10°)\) with respect to the global coordinate system.

1.3. Boundary conditions and loads#

The boundary conditions are of the Dirichlet type. A linear displacement field is assumed in \(x\) and \(y\) so that the deformation field is constant.

Dirichlet conditions

\(\mathrm{dX}=\mathrm{2x}+\mathrm{3y}+\mathrm{4z}\)

\(\mathrm{dY}=\mathrm{3x}+\mathrm{5y}+\mathrm{6z}\)

\(\mathrm{dZ}=\mathrm{4x}+\mathrm{6y}+\mathrm{7z}\)

Thermal conditions

Temperature imposed on the entire structure of 100

We will therefore impose:

  • for node \(A\)

\(\mathrm{dX}=\mathrm{0,}\mathrm{dY}=\mathrm{0,}\mathrm{dZ}=0\)

  • for node \(B\)

\(\mathrm{dX}=\mathrm{9,}\mathrm{dY}=\mathrm{14,}\mathrm{dZ}=18\)

  • for node \(C\)

\(\mathrm{dX}=\mathrm{13,}\mathrm{dY}=\mathrm{21,}\mathrm{dZ}=26\)

  • for node \(D\)

\(\mathrm{dX}=\mathrm{5,}\mathrm{dy}=\mathrm{8,}\mathrm{dZ}=11\)