Reference problem ===================== Geometry --------- The global frame of reference is frame :math:`(A,X,Y,Z)`. In this coordinate system the coordinates of the nodes are: :math:`A(0.,0.,0.)` :math:`B(3.,1.,0.)` :math:`C(2.,3.,0.)` :math:`D(3.,1.,-1)` We will study the behavior of the tetrahedron :math:`\mathrm{ABCD}` whose material properties are defined in a local coordinate system :math:`(A,x,y,z)` obtained by rotating the global coordinate system according to nautical angles :math:`(\alpha =30°,\beta =20°,\gamma =10°)`. Material properties ---------------------- The materials used are orthotropic and transverse isotropic. In order to validate orthotropic deformations of thermal origin, a thermomechanical calculation is also carried out. We adopt the terminology convention used in Code_Aster. Let the suffixes :math:`L`, :math:`T` and :math:`N` mean Longitudinal, Transverse, and Normal. The units are not specified. .. image:: images/Object_1.svg :width: 259 :height: 98 .. _RefImage_Object_1.svg: (We know that .. image:: images/Object_2.svg :width: 259 :height: 98 .. _RefImage_Object_2.svg: , either .. image:: images/Object_3.svg :width: 259 :height: 98 .. _RefImage_Object_3.svg: For transverse isotropy, we keep the same values knowing that: .. image:: images/Object_4.svg :width: 259 :height: 98 .. _RefImage_Object_4.svg: It should be noted that these coefficients are defined in a local coordinate system :math:`(A,L,T,N)` rotated with the nautical angles :math:`(30°,20°,10°)` with respect to the global coordinate system. Boundary conditions and loads ------------------------------------- The boundary conditions are of the Dirichlet type. A linear displacement field is assumed in :math:`x` and :math:`y` so that the deformation field is constant. .. csv-table:: "Dirichlet conditions", ":math:`\mathrm{dX}=\mathrm{2x}+\mathrm{3y}+\mathrm{4z}`" "", ":math:`\mathrm{dY}=\mathrm{3x}+\mathrm{5y}+\mathrm{6z}`" "", ":math:`\mathrm{dZ}=\mathrm{4x}+\mathrm{6y}+\mathrm{7z}`" "Thermal conditions", "Temperature imposed on the entire structure of 100" We will therefore impose: .. csv-table:: "* for node :math:`A` "," :math:`\mathrm{dX}=\mathrm{0,}\mathrm{dY}=\mathrm{0,}\mathrm{dZ}=0`" "* for node :math:`B` "," :math:`\mathrm{dX}=\mathrm{9,}\mathrm{dY}=\mathrm{14,}\mathrm{dZ}=18`" "* for node :math:`C` "," :math:`\mathrm{dX}=\mathrm{13,}\mathrm{dY}=\mathrm{21,}\mathrm{dZ}=26`" "* for node :math:`D` "," :math:`\mathrm{dX}=\mathrm{5,}\mathrm{dy}=\mathrm{8,}\mathrm{dZ}=11`"