3. Modeling A#

3.1. Characteristics of modeling#

3D modeling is implemented. Isotropic, transverse and orthotropic materials are tested (with possible consideration of thermal deformations).

Notes:

  • Transverse isotropy is not tested for plane stresses because this case corresponds to isotropy.

  • For the axisymmetric case, the stress field depends on the calculation point.

  • This point is chosen at the point of integration of the triangle (i.e. it is the center of gravity of the triangle).

  • We recall that orthotropy in any coordinate system is not available for Fourier modeling because there is then coupling of all the components of the stress tensor:

The current implementation makes it possible to use only the symmetric components from which the antisymmetric components can be found, but for this to be possible, slips must not induce tensile stresses.

3.2. Characteristics of the mesh#

We have a 4-node tetrahedron element \(\mathrm{ABCD}\).

3.3. Tested values#

Identification

Reference

Case of 3D transverse isotropy

result name: \(\mathit{Mest1}\)

displacement field

\(\mathit{dy}(c)\)

21

field EPSI_ELGA

\(\mathit{EPXY}\)

3

\(\mathit{EPXZ}\)

4

\(\mathit{EPYZ}\)

6

field SIEF_ELGA

\(\mathit{SIXX}\)

43310.760

\(\mathit{SIYY}\)

72798.710

\(\mathit{SIZZ}\)

62459.356

\(\mathit{SIXY}\)

39567.891

\(\mathit{SIXZ}\)

31078.597

\(\mathit{SIYZ}\)

84049.301

field SIGM_ELNO

\(\mathit{SIXX}\)

43310.760

Champ emel—elga Ep

1.19123 E6

Champ emel—elno—elga Ep

1.19123 E6

Case of 3D orthotropy

result name: \(\mathit{Mest2}\)

displacement field

\(\mathit{dy}(c)\)

21

field EPSI_ELGA

\(\mathit{EPXY}\)

3

\(\mathit{EPXZ}\)

4

\(\mathit{EPYZ}\)

6

field SIEF_ELGA

\(\mathit{SIXX}\)

601.8754

\(\mathit{SIYY}\)

80053.665

\(\mathit{SIZZ}\)

78596.607

\(\mathit{SIXY}\)

83948.263

\(\mathit{SIXZ}\)

17339.093

\(\mathit{SIYZ}\)

126571.71

champ enel—elga \(\mathit{Ep}\)

1.55286.106

champ enel—elno—elga \(\mathit{Ep}\)

1.55286.106

Case of orthotropy taking into account thermal deformations (command STAT_NON_LINE )

result name: \(\mathit{Mest3}\)

displacement field

\(\mathit{dy}(c)\)

21

Identification

Reference

field EPSI_ELGA

\(\mathit{EPXY}\)

3

\(\mathit{EPXZ}\)

4

\(\mathit{EPYZ}\)

6

field SIEF_ELGA

\(\mathit{SIXX}\)

1226.2014

\(\mathit{SIYY}\)

78597.064

\(\mathit{SIZZ}\)

76585.792

\(\mathit{SIXY}\)

83710.907

\(\mathit{SIXZ}\)

17255.703

\(\mathit{SIYZ}\)

126657.367

Case of orthotropy taking into account thermal deformations (command MECA_STATIQUE )

result name: \(\mathit{Mest4}\)

displacement field

\(\mathit{dy}(c)\)

21

field EPSI_ELGA

\(\mathit{EPXY}\)

3

\(\mathit{EPXZ}\)

4

\(\mathit{EPYZ}\)

6

field SIEF_ELGA

\(\mathit{SIXX}\)

1226.2014

\(\mathit{SIYY}\)

78597.064

\(\mathit{SIZZ}\)

76585.792

\(\mathit{SIXY}\)

83710.907

\(\mathit{SIXZ}\)

17255.703

\(\mathit{SIYZ}\)

126657.367