3. Modeling A#

_images/10000000000001D9000001886349DDE9FC145C8E.png

M266 ROAD

3.1. Characteristics of the mesh#

Number of knots: 169

Number of meshes and type: 288 TRIA3

3.2. Tested sizes and results#

Identification

Reference Type

Reference

Tolerance (%)

\(\mathrm{DZ}(\mathrm{A1})\)

“ANALYTIQUE”

2.433 10-4

6%

\(\mathrm{MXX}(\mathrm{A1})\)

“ANALYTIQUE”

2%

\(\mathrm{KXX}(\mathrm{A1})\)

“ANALYTIQUE”

7.21 10-4

5%

Identification

Reference type

Reference

Tolerance (%)

\(\mathit{MXX}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

4044.16

1.e-6

\(\mathit{KXX}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

7.1996 10-4

1.e-6

  • The quantities are expressed in the coordinate system defined by the nautical angles \(\alpha \mathrm{=}33°\) and \(\beta \mathrm{=}12°\).

Identification

Reference Type

Reference

Tolerance (%)

\(\mathrm{DZ}(\mathrm{A1})\)

“ANALYTIQUE”

2.433 10-4

6%

\(\mathit{MXX}(\mathit{A1})\)

“NON_REGRESSION”

2847.47

1.e-6

\(\mathit{MYY}(\mathit{A1})\)

“NON_REGRESSION”

1198.15

1.e-6

\(\mathit{MXY}(\mathit{A1})\)

“NON_REGRESSION”

-1852.21

1.e-6

\(\mathit{KXX}(\mathit{A1})\)

“NON_REGRESSION”

5.0692 10-4

1.e-6

\(\mathit{KYY}(\mathit{A1})\)

“NON_REGRESSION”

2.1330 10-4

1.e-6

\(\mathit{KXY}(\mathit{A1})\)

“NON_REGRESSION”

-3.2974 10-4

1.e-6

Identification

Reference type

Reference

Tolerance (%)

\(\mathit{MXX}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

2842.56

1.e-6

\(\mathit{MYY}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

1197.70

1.e-6

\(\mathit{MXY}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

-1849.40

1.e-6

\(\mathit{KXX}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

5.0605 10-4

1.e-6

\(\mathit{KYY}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

2.1322 10-4

1.e-6

\(\mathit{KXY}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

-3.2924 10-4

1.e-6

3.3. notes#

The coefficients of the following elasticity matrices, used during the calculations, were calculated with \({\nu }_{b}=0\):

  1. Membrane elasticity matrix: \(\left\{\begin{array}{ccc}4614.& 0& 0\\ 0& 4614.& 0\\ 0& 0& 2142.\end{array}\right\}{10}^{6}N\mathrm{/}m\)

  2. Flexural elasticity matrix: \(\left\{\begin{array}{ccc}5.617& 0& 0\\ 0& 5.617& 0\\ 0& 0& 2.57\end{array}\right\}{10}^{6}N/m\)

To be certain of staying within the elastic domain, the elastic limits, expressed in the orthotropy coordinate system, are set arbitrarily to a very high value:

Elastic limits in positive flexure:

Direction \(x\): \({1.10}^{10}\mathrm{MNm}/\mathrm{ml}\)

Direction \(y\): \({1.10}^{10}\mathrm{MNm}/\mathrm{ml}\)

Elastic limits in negative flexure:

Direction \(x\): \(–{1.10}^{10}\mathrm{MNm}/\mathrm{ml}\)

Direction \(y\): \(–{1.10}^{10}\mathrm{MNm}/\mathrm{ml}\)

As the structure remains in the elastic domain, the kinematic recall coefficient (Prager constant) can take any value.