Modeling A ============== .. image:: images/10000000000001D9000001886349DDE9FC145C8E.png :width: 4.9268in :height: 4.0835in .. _RefImage_10000000000001D9000001886349DDE9FC145C8E.png: M266 ROAD Characteristics of the mesh ---------------------------- Number of knots: 169 Number of meshes and type: 288 TRIA3 Tested sizes and results ------------------------------ .. csv-table:: "**Identification**", "**Reference Type**", "**Reference**", "**Tolerance (%)**" ":math:`\mathrm{DZ}(\mathrm{A1})` ", "'ANALYTIQUE'", "2.433 10-4"," 6%" ":math:`\mathrm{MXX}(\mathrm{A1})` ", "'ANALYTIQUE'", "4050. "," 2%" ":math:`\mathrm{KXX}(\mathrm{A1})` ", "'ANALYTIQUE'", "7.21 10-4"," 5%" +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |**Identification** |**Reference type**|**Reference**|**Tolerance (%)**| +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |:math:`\mathit{MXX}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |4044.16 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |:math:`\mathit{KXX}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |7.1996 10-4 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ * The quantities are expressed in the coordinate system defined by the nautical angles :math:`\alpha \mathrm{=}33°` and :math:`\beta \mathrm{=}12°`. .. csv-table:: "**Identification**", "**Reference Type**", "**Reference**", "**Tolerance (%)**" ":math:`\mathrm{DZ}(\mathrm{A1})` ", "'ANALYTIQUE'", "2.433 10-4"," 6%" ":math:`\mathit{MXX}(\mathit{A1})` ", "'NON_REGRESSION'", "2847.47", "1.e-6" ":math:`\mathit{MYY}(\mathit{A1})` ", "'NON_REGRESSION'", "1198.15", "1.e-6" ":math:`\mathit{MXY}(\mathit{A1})` ", "'NON_REGRESSION'", "-1852.21", "1.e-6" ":math:`\mathit{KXX}(\mathit{A1})` ", "'NON_REGRESSION'", "5.0692 10-4", "1.e-6" ":math:`\mathit{KYY}(\mathit{A1})` ", "'NON_REGRESSION'", "2.1330 10-4", "1.e-6" ":math:`\mathit{KXY}(\mathit{A1})` ", "'NON_REGRESSION'", "-3.2974 10-4", "1.e-6" +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |**Identification** |**Reference type**|**Reference**|**Tolerance (%)**| +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |:math:`\mathit{MXX}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |2842.56 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |:math:`\mathit{MYY}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |1197.70 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |:math:`\mathit{MXY}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |-1849.40 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |:math:`\mathit{KXX}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |5.0605 10-4 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |:math:`\mathit{KYY}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |2.1322 10-4 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ |:math:`\mathit{KXY}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |-3.2924 10-4 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+-----------------+ notes --------- The coefficients of the following elasticity matrices, used during the calculations, were calculated with :math:`{\nu }_{b}=0`: 1. Membrane elasticity matrix: :math:`\left\{\begin{array}{ccc}4614.& 0& 0\\ 0& 4614.& 0\\ 0& 0& 2142.\end{array}\right\}{10}^{6}N\mathrm{/}m` 2. Flexural elasticity matrix: :math:`\left\{\begin{array}{ccc}5.617& 0& 0\\ 0& 5.617& 0\\ 0& 0& 2.57\end{array}\right\}{10}^{6}N/m` To be certain of staying within the elastic domain, the elastic limits, expressed in the orthotropy coordinate system, are set arbitrarily to a very high value: Elastic limits in positive flexure: Direction :math:`x`: :math:`{1.10}^{10}\mathrm{MNm}/\mathrm{ml}` Direction :math:`y`: :math:`{1.10}^{10}\mathrm{MNm}/\mathrm{ml}` Elastic limits in negative flexure: Direction :math:`x`: :math:`–{1.10}^{10}\mathrm{MNm}/\mathrm{ml}` Direction :math:`y`: :math:`–{1.10}^{10}\mathrm{MNm}/\mathrm{ml}` As the structure remains in the elastic domain, the kinematic recall coefficient (Prager constant) can take any value.