5. C modeling#

5.1. Characteristics of modeling#

_images/Shape6.gif _images/10000000000001E0000001E09B5895DB4FFF4EB0.png

Q4GG modeling (TRIA3)

  • Boundary conditions:

. Side \(\mathrm{A2A4}\): \(\mathrm{DZ}=0\)

  • Symmetry conditions

. Side \(\mathrm{A1A2}\): \(\mathrm{DY}=\mathrm{DRX}=0\)

. Side \(\mathrm{A1A3}\): \(\mathit{DX}\mathrm{=}\mathit{DRY}\mathrm{=}0\)

M266 ROAD The slab is symmetric with respect to planes \((X\mathrm{=}0)\) and \((Y\mathrm{=}0)\), the calculations are carried out on a quarter of the slab.

X

5.2. Characteristics of the mesh#

Number of knots: 169

Number of meshes and type: 288 TRIA3

5.3. Tested sizes and results#

Identification

Reference Type

Reference

Tolerance (%)

\(\mathit{DZ}(\mathit{A1})\)

“ANALYTIQUE”

2.658 10-4

1%

\(\mathit{MXX}(\mathit{A1})\)

“ANALYTIQUE”

0.5%

\(\mathit{KXX}(\mathit{A1})\)

“ANALYTIQUE”

7.878 10-4

0.5%

Identification

Reference type

Reference

Tolerance (%)

\(\mathit{MXX}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

4032.58

1.e-6

\(\mathit{KXX}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

7.8442 10-4

1.e-6

  • The quantities are expressed in the coordinate system defined by the nautical angles \(\alpha \mathrm{=}33°\) and \(\beta \mathrm{=}12°\).

Identification

Reference Type

Reference

Tolerance (%)

\(\mathit{DZ}(\mathit{A1})\)

“ANALYTIQUE”

2.658 10-4

1%

\(\mathit{MXX}(\mathit{A1})\)

“NON_REGRESSION”

2836.04

1.e-6

\(\mathit{MYY}(\mathit{A1})\)

“NON_REGRESSION”

1195.36

1.e-6

\(\mathit{MXY}(\mathit{A1})\)

“NON_REGRESSION”

-1842.50

1.e-6

\(\mathit{KXX}(\mathit{A1})\)

“NON_REGRESSION”

5.5167 10-4

1.e-6

\(\mathit{KYY}(\mathit{A1})\)

“NON_REGRESSION”

2.3252 10-4

1.e-6

\(\mathit{KXY}(\mathit{A1})\)

“NON_REGRESSION”

-3.5840 10-4

1.e-6

Identification

Reference type

Reference

Tolerance (%)

\(\mathit{MXX}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

2836.04

1.e-6

\(\mathit{MYY}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

1195.36

1.e-6

\(\mathit{MXY}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

-1842.50

1.e-6

\(\mathit{KXX}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

5.5167 10-4

1.e-6

\(\mathit{KYY}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

2.3252 10-4

1.e-6

\(\mathit{KXY}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

-3.5840 10-4

1.e-6

5.4. notes#