1. Reference problem#

1.1. Geometry#

Cylindrical tank of medium radius \(R=5.7m\), \(e=0.04m\) thick and \(L=16m\) high,, and in height, simply supported at its base (rotation is free), and subjected to internal hydrostatic pressure.

_images/Shape1.gif

Average radius:

\(R=5.7m\)

Thickness:

\(e=0.04m\)

Height:

\(L=16m\)

1.2. Material properties#

The properties of the materials constituting the plate are:

Material 1: isotropic elastic:

Young’s modulus

\(E=2.1{10}^{11}\mathrm{Pa}\)

Poisson’s ratio

\(\nu =0.3\)

Material 2: orthotropic elastic: In order to get rid of the dependence of the notations on the orthotropy coordinate system, the material characteristics are given in the cylindrical coordinate system

\(\begin{array}{c}{E}_{r}\mathrm{=}2.1E11\mathit{Pa}\\ {E}_{\theta }\mathrm{=}2.1E11\mathit{Pa}\\ {E}_{z}\mathrm{=}4E11\mathit{Pa}\\ {\nu }_{r\theta }\mathrm{=}0.075\\ {\nu }_{rz}\mathrm{=}0.075\\ {\nu }_{\theta z}\mathrm{=}0.075\\ {G}_{r\theta }\mathrm{=}0.35E10\mathit{Pa}\\ {G}_{rz}\mathrm{=}0.45E10\mathit{Pa}\\ {G}_{\theta z}\mathrm{=}0.45E10\mathit{Pa}\end{array}\)

1.3. Boundary conditions and loads#

Base \(z=0\) simply pressed

Internal pressure varying linearly as follows \(z\): \(p(z)=\mathrm{P0.}(L-z)/L\)

with \(\mathrm{P0}=15000\mathrm{Pa}\).

1.4. Initial conditions#

Not applicable.