1. Reference problem#
1.1. Geometry#
A4 A3
5 subdivisions
Z Y
A1 GRN011 A2 0.2 \(m\)
0.2 \(m\)
10 subdivisions x
The coordinates of the points are given in meters (\(m\)):
\(\mathrm{A1}(\mathrm{0,0}\mathrm{,0})\) |
|
\(\mathrm{A2}(\mathrm{10,0}\mathrm{,0})\) |
|
1.2. Material properties#
1.2.1. A to O models#
The material has an isotropic elastic behavior:
Young’s module: \(E=\mathrm{200000.MPa}\)
Poisson’s ratio: \(\nu \mathrm{=}0.\)
Density: \(\rho \mathrm{=}\mathrm{1000.Kg}\mathrm{/}{m}^{3}\)
For N modeling, the material is GLRC_DAMAGE with equivalent elastic properties (zero steel modulus). ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1.3. Boundary conditions and loads#
1.3.1. A and B models#
Edge \(A1A4\) is embedded. The plate is \(\mathrm{0,8}m\) thick. The plate is offset from \(e=\mathrm{0,4}m\).
A \(\mathit{Fz}=–1000\text{N}\) nodal force is applied to the \(A1A2\) edge.
1.3.2. D, E, F, G, H, H, H, H, I, I, I, J, K, M, and N modeling#
Edge \(A1A4\) is embedded. The plate is \(\mathrm{0,8}m\) thick. The plate is offset from \(e=\mathrm{0,4}m\).
A distributed transverse nodal force \({F}_{z}=–1000N/m\) is applied to the edge \(A2A3\) and a distributed nodal traction force \({F}_{x}=4000N/m\) is applied to the same edge \(A2A3\).
1.3.3. O modeling#
Edge \(A1A4\) is embedded. The plate is \(\mathrm{0,8}m\) thick. The plate is offset from \(e=\mathrm{0,4}m\).
A \(\mathit{Fz}=–1000\text{N}\) nodal force is applied to the \(A1A2\) edge.