1. Reference problem#

1.1. Geometry#

A4 A3

5 subdivisions

Z Y

A1 GRN011 A2 0.2 \(m\)

0.2 \(m\)

10 subdivisions x

The coordinates of the points are given in meters (\(m\)):

\(\mathrm{A1}(\mathrm{0,0}\mathrm{,0})\)

\(\mathrm{A3}(\mathrm{10,5}\mathrm{,0})\)

\(\mathrm{A2}(\mathrm{10,0}\mathrm{,0})\)

\(\mathrm{A4}(\mathrm{0,5}\mathrm{,0})\)

1.2. Material properties#

1.2.1. A to O models#

The material has an isotropic elastic behavior:

Young’s module: \(E=\mathrm{200000.MPa}\)

Poisson’s ratio: \(\nu \mathrm{=}0.\)

Density: \(\rho \mathrm{=}\mathrm{1000.Kg}\mathrm{/}{m}^{3}\)

For N modeling, the material is GLRC_DAMAGE with equivalent elastic properties (zero steel modulus). ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1.3. Boundary conditions and loads#

1.3.1. A and B models#

Edge \(A1A4\) is embedded. The plate is \(\mathrm{0,8}m\) thick. The plate is offset from \(e=\mathrm{0,4}m\).

A \(\mathit{Fz}=–1000\text{N}\) nodal force is applied to the \(A1A2\) edge.

1.3.2. D, E, F, G, H, H, H, H, I, I, I, J, K, M, and N modeling#

Edge \(A1A4\) is embedded. The plate is \(\mathrm{0,8}m\) thick. The plate is offset from \(e=\mathrm{0,4}m\).

A distributed transverse nodal force \({F}_{z}=–1000N/m\) is applied to the edge \(A2A3\) and a distributed nodal traction force \({F}_{x}=4000N/m\) is applied to the same edge \(A2A3\).

1.3.3. O modeling#

Edge \(A1A4\) is embedded. The plate is \(\mathrm{0,8}m\) thick. The plate is offset from \(e=\mathrm{0,4}m\).

A \(\mathit{Fz}=–1000\text{N}\) nodal force is applied to the \(A1A2\) edge.