10. J modeling#

10.1. Characteristics of modeling#

Axisymmetric shell element SEG3, in Mindlin-Reissner theory: we do not consider any metric modification, the coefficient A_ CIS is equal to \(5\mathrm{/}6\).

_images/100005380000175C00000D20B37F2DCC90A00C38.svg

Boundary conditions:

(NOEUD = “A”, DX= 0. , DY= 0. , DRZ = 0.) (NOEUD = “O”, DRZ = 0.))

10.2. Characteristics of the mesh#

Number of knots: 21

Number of meshes and types: 10 SEG3

10.3. Tested sizes and results#

Identification

Reference type

Reference values

Love-Kirchhoff

Tolerance \((\text{\%})\)

Arrow

_images/Object_21.svg

“ANALYTIQUE”

—178.424

0.5

Arrow

_images/Object_22.svg

“ANALYTIQUE”

—101.827

0.5

Rotation

_images/Object_23.svg

“ANALYTIQUE”

255.940

0.5

Identification

Reference type

Reference values

Tolerance \((\text{\%})\)

Point

Maille

Component

D

IJK

_images/Object_90.svg

“ANALYTIQUE”

170.625

_images/Object_253.svg

“ANALYTIQUE”

511.875

0.5

KLM

_images/Object_269.svg

“ANALYTIQUE”

170.625

_images/Object_270.svg

“ANALYTIQUE”

511.875

0.5

Identification

Reference type

Reference values

Tolerance \((\text{\%})\)

Point

Maille

Component

O

STU

_images/Object_272.svg

“ANALYTIQUE”

—0.08125

_images/Object_273.svg

“ANALYTIQUE”

—0.08125

A

ABC

_images/Object_274.svg

“ANALYTIQUE”

0.125

_images/Object_275.svg

“ANALYTIQUE”

0.0375

A

IJK

_images/Object_277.svg

“ANALYTIQUE”

—0.05156

0.5

KLM

_images/Object_279.svg

“ANALYTIQUE”

—0.05156

0.7

Notes:

We note the good results obtained, except on

_images/Object_121.svg

and

_images/Object_122.svg

, which involve higher-order derivatives that are less well calculated by the element.

10.4. Contents of the results file#

Generalized movements, deformations and forces and stresses at the nodes.