9. Modeling I#

9.1. Characteristics of modeling#

Axisymmetric shell element SEG3, in Love-Kirchhoff theory: no metric modification is considered, the coefficient A_ CIS is equal to 106.

_images/100007040000175C00000D20EB70BF54C5E8EBAA.svg

Boundary conditions:

(NOEUD = “A”, DX: 0. , BY: 0. , DRZ: 0.) (NOEUD = “O”, DRZ: 0.))

9.2. Characteristics of the mesh#

Number of knots: 21

Number of meshes and types: 10 SEG3

9.3. Tested sizes and results#

Identification

Reference type

Reference values

Love-Kirchhoff

Tolerance \((\text{\%})\)

Arrow

_images/Object_15.svg

“ANALYTIQUE”

—170.6251

0.6

Arrow

_images/Object_16.svg

“ANALYTIQUE”

—95.9765

1.0

Rotation

_images/Object_18.svg

“ANALYTIQUE”

255.940

0.6

Identification

Reference type

Reference values

Tolerance \((\text{\%})\)

Point

Maille

Component

D

IJK

_images/Object_17.svg

“ANALYTIQUE”

170.625

_images/Object_19.svg

“ANALYTIQUE”

511.875

0.5

KLM

_images/Object_79.svg

“ANALYTIQUE”

170.625

60

_images/Object_80.svg

“ANALYTIQUE”

511.875

0.5

Identification

Reference type

Reference values

Tolerance \((\text{\%})\)

Point

Maille

Component

O

STU

_images/Object_124.svg

“ANALYTIQUE”

—0.08125

0.5

_images/Object_127.svg

“ANALYTIQUE”

—0.08125

0.5

A

ABC

_images/Object_128.svg

“ANALYTIQUE”

0.125

15.0

_images/Object_264.svg

“ANALYTIQUE”

0.0375

15.0

D

IJK

_images/Object_266.svg

“ANALYTIQUE”

—0.05156

6.0

KLM

_images/Object_268.svg

“ANALYTIQUE”

—0.05156

6.0

Notes:

We note the good results obtained, except on

_images/Object_104.svg

and

_images/Object_105.svg

, which involve higher-order derivatives that are less well calculated by the element.

9.4. Contents of the results file#

Generalized movements, deformations and forces and stresses at the nodes.