2. Benchmark solution#

2.1. Calculation method#

The analytic expressions of the stress intensity factors \({K}_{I}\) and \({K}_{\mathrm{II}}\) are functions of the distributed force \(p\), of the length of the crack a, of the width of the plate \(\mathrm{Lx}\):

\(\begin{array}{}{K}_{I}=p\sqrt{\pi a}f(\frac{a}{\mathrm{Lx}})\\ {K}_{\mathrm{II}}=0\end{array}\)

where function \(f\) can be determined in several different ways. We choose the one obtained by [1], and that is true for \(\begin{array}{}\frac{a}{\mathrm{Lx}}<\mathrm{0,6}\end{array}\):

\(\begin{array}{}f(\frac{a}{\mathrm{Lx}})=\mathrm{1,12}-\mathrm{0,231}(\frac{a}{\mathrm{Lx}})+\mathrm{10,55}{(\frac{a}{\mathrm{Lx}})}^{2}-\mathrm{21,72}{(\frac{a}{\mathrm{Lx}})}^{3}+\mathrm{30,39}{(\frac{a}{\mathrm{Lx}})}^{4}\end{array}\)

We are moving the crack forward thanks to the Paris law:

\(\begin{array}{}\frac{\mathrm{da}}{\mathrm{dN}}=C\Delta {K}^{m}\end{array}\) where a is the crack length, \(C\) and \(m\) are material constants, \(\begin{array}{}\Delta K\end{array}\) is the difference between two consecutive FICs’s, and \(N\) is the number of cycles.

With the numerical values of the test:

No spread: \(\mathrm{0,25}m\)

\(\mathrm{Lx}\): \(10m\)

2.2. Reference quantities and results#

Reference

\(a(m)\)

\({K}_{I}({\mathrm{Pa.m}}^{\mathrm{0,5}})\)

\({K}_{\mathrm{II}}({\mathrm{Pa.m}}^{\mathrm{0,5}})\)

2.5

4,205998 106

0

2.75

4,63286 106

0

3

5,09492 106

0

3.25

5,59908 106

0

3.5

6,15349 106

0

3.75

6,76776 106

0

4

7,4531 106

0

4.25

8,2224 106

0

4.5

9,0905 106

0

4.75

1,0074 107

0

5

1,1192 107

0

5.25

1,2465 107

0

5.5

1,3916 107

0

5.75

1,55716 107

0

6

1,74586 107

0

Table 2.2-1 : reference values for \({K}_{I}\) and \({K}_{\mathrm{II}}\)

2.3. Uncertainties about the solution#

None, analytical solution.

2.4. Bibliographical references#

  1. TADA H., PARIS P., IRWIN G.:The stress analysis of cracks, Handbook. Del Research Corporation, Hellertown, PA, 1973.