Benchmark solution ===================== Calculation method ----------------- The analytic expressions of the stress intensity factors :math:`{K}_{I}` and :math:`{K}_{\mathrm{II}}` are functions of the distributed force :math:`p`, of the length of the crack a, of the width of the plate :math:`\mathrm{Lx}`: :math:`\begin{array}{}{K}_{I}=p\sqrt{\pi a}f(\frac{a}{\mathrm{Lx}})\\ {K}_{\mathrm{II}}=0\end{array}` where function :math:`f` can be determined in several different ways. We choose the one obtained by [:ref:`1 <1>`], and that is true for :math:`\begin{array}{}\frac{a}{\mathrm{Lx}}<\mathrm{0,6}\end{array}`: :math:`\begin{array}{}f(\frac{a}{\mathrm{Lx}})=\mathrm{1,12}-\mathrm{0,231}(\frac{a}{\mathrm{Lx}})+\mathrm{10,55}{(\frac{a}{\mathrm{Lx}})}^{2}-\mathrm{21,72}{(\frac{a}{\mathrm{Lx}})}^{3}+\mathrm{30,39}{(\frac{a}{\mathrm{Lx}})}^{4}\end{array}` We are moving the crack forward thanks to the Paris law: :math:`\begin{array}{}\frac{\mathrm{da}}{\mathrm{dN}}=C\Delta {K}^{m}\end{array}` where a is the crack length, :math:`C` and :math:`m` are material constants, :math:`\begin{array}{}\Delta K\end{array}` is the difference between two consecutive FICs's, and :math:`N` is the number of cycles. With the numerical values of the test: No spread: :math:`\mathrm{0,25}m` :math:`\mathrm{Lx}`: :math:`10m` Reference quantities and results ----------------------------------- +------------+-----------------------------------------------+---------------------------------------------------------+ |Reference | +------------+-----------------------------------------------+---------------------------------------------------------+ |:math:`a(m)`|:math:`{K}_{I}({\mathrm{Pa.m}}^{\mathrm{0,5}})`|:math:`{K}_{\mathrm{II}}({\mathrm{Pa.m}}^{\mathrm{0,5}})`| +------------+-----------------------------------------------+---------------------------------------------------------+ |2.5 |4,205998 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |2.75 |4,63286 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |3 |5,09492 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |3.25 |5,59908 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |3.5 |6,15349 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |3.75 |6,76776 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |4 |7,4531 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |4.25 |8,2224 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |4.5 |9,0905 106 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |4.75 |1,0074 107 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |5 |1,1192 107 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |5.25 |1,2465 107 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |5.5 |1,3916 107 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |5.75 |1,55716 107 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ |6 |1,74586 107 |0 | +------------+-----------------------------------------------+---------------------------------------------------------+ **Table** 2.2-1 **: reference values for** :math:`{K}_{I}` **and** :math:`{K}_{\mathrm{II}}` Uncertainties about the solution ---------------------------- None, analytical solution. Bibliographical references --------------------------- 1. TADA H., PARIS P., IRWIN G.:The stress analysis of cracks, Handbook. Del Research Corporation, Hellertown, PA, 1973.