3. Modeling A#

3.1. Characteristics of modeling#

In this modeling, the mesh method is tested for crack propagation. Level-sets are determined by orthogonal projection onto the segments making up the crack.

3.2. Characteristics of the mesh#

The structure is modelled by a regular « healthy » mesh composed of \(40\times 101\) QUAD4, respectively along the \(x,y\) axes. The crack is represented by a succession of SEG2, regardless of the mesh of the structure.

_images/1000000000000459000003306C0E7AA868D19B2D.jpg

Figure 3.2-a : mesh of the cracked plate

3.3. Tested sizes and results#

For each propagation step (\(\mathrm{2,5}m\)), we test the value of the stress intensity factors \({K}_{I}\) and \({K}_{\mathrm{II}}\) given by CALC_G.

We also test the ordinate of the bottom of the crack given by PROPA_FISS.

3.3.1. Results on \({K}_{I}\):#

3.3.2. Results on \({K}_{\mathrm{II}}\):#

For this test, we want \({K}_{\mathrm{II}}\) to be less than \({10}^{-4}{K}_{I}\). So, we make sure that \({K}_{\mathrm{II}}\) is fairly close to zero, the reference value.

Identification

Code_Aster

Reference

CALC_G

KII_1

-2,7313 102

0

KII_2

-8,5062 101

0

KII_3

-2,6061 102

0

KII_4

1,5995 102

0

KII_5

-2,7309 102

0

KII_6

-2,3176 102

0

KII_7

-3,1276 102

0

KII_8

3,1327 102

0

KII_9

-3,8393 102

0

KII_10

-4,1916 102

0

KII_11

-4,986 102

0

KII_12

-5,6998 102

0

KII_13

-6,7642 102

0

KII_14

-7,9542 102

0

KII_15

-9,5344 102

0

3.3.3. Results on the ordinate of the bottom of the crack:#

It is verified that the ordinate coordinates of the successive crack bottoms are close to the initial value. This check gives the same information as the test on \({K}_{\mathrm{II}}\).

Identification

Code_Aster

Reference

Difference

CALC_G

y_1

15

15

15

0%

y_2

15

15

15

2.18 10-4%

y_3

15

15

15

2.8 10-4%

y_4

15

15

15

4.51 10-4%

y_5

15

15

15

5.47 10-4%

y_6

15

15

15

6.95 10-4%

y_7

15

15

15

8.1 10-4%

y_8

15

15

15

9.5 10-4%

y_9

15,0002

15

0.001%

y_10

15,0002

15

0.001%

y_11

15,0002

15

0.001%

y_12

15,0002

15

0.002%

y_13

15,0002

15

0.002%

y_14

15,0003

15

0.002%

y_15

15,0003

15

0.002%

3.4. Additional results#

_images/10000000000003C2000002560CA3F637DFCDA0C4.gif

Figure 3.4-a : Influence of the choice of RI and RS crowns on the error on KI

Here we can see that the most suitable configuration for choosing \(\mathrm{RI}\) and \(\mathrm{RS}\) (lower and upper crowns of the theta field) is: \(\mathrm{RI}=2\ast {L}_{0}\) and \(\mathrm{RS}=7\ast {L}_{0}\) where \({L}_{0}\) is the smallest edge of the mesh.