2. Reference solution#
2.1. Calculation method used for the reference solution#
The reference solution is obtained analytically for an Euler-Bernoulli beam. Theoretical aspects are developed in the reference [bib1].
Using the notations in paragraph [§1], the critical values are given by the expression:
\({M}_{\mathrm{CR}}=-\frac{{\mathrm{EI}}_{x}+\mathrm{GJ}}{\mathrm{2R}}\pm \sqrt{{(\frac{{\mathrm{EI}}_{x}-\mathrm{GJ}}{\mathrm{2R}})}^{2}+{\mathrm{4n}}^{2}\frac{{\mathrm{EI}}_{x}\mathrm{GJ}}{{R}^{2}}}n=\mathrm{1,2}\mathrm{,3},\mathrm{...}\)
The plus sign corresponds to positive moments as shown in the figure of [§1.1].
2.2. Benchmark results#
The first 5 critical loads are ranked in order of increasing modulus.
Fashion |
Critical Moment ( \(\mathit{Nm}\) ) |
1 |
2.86074 |
2 |
8.63207 |
3 |
—8.78382 |
4 |
14.4147 |
5 |
—14.5551 |
2.3. Uncertainty about the solution#
Analytical solution
2.4. Bibliographical references#
[1] TIMOSHENKO Stephen P., GERE James M., Theory of Elastic Stability, McGraw-Hill, International Edition, 1963, pp. 313-318.