2. Benchmark solution#

2.1. Calculation method used for the reference solution#

The reference results were obtained both experimentally [1] and with the code HERCULE [2]. The finite element model used is identical to that used for modeling A performed with*Code_Aster*.

_images/1000000000000207000001594C43CE9088988969.png
Mesh:

\(1019\)

\(\mathrm{N6}-\mathrm{N17}\)

The geometric dimensions used in calculations with HERCULE are very slightly different from those shown in §1.1:

  • \(L=\mathrm{692.50}\mathrm{mm}\); \(l=\mathrm{438.50}\mathrm{mm}\); \(H=\mathrm{473.25}\mathrm{mm}\)

2.2. Benchmark results#

  • Natural frequencies

  • Move to the points forming the corners of the table,

  • Support reactions to anchorages,

  • Internal forces at the « corners ».

Identification

Reference [] experimental

Reference [] Hercule

Effective mass (% of total mass)

Fashion

Frequency (\(\mathrm{Hz}\))

Frequency (\(\mathrm{Hz}\))

\(X\)

\(Y\)

\(Z\)

1

110.0

110.857

94.2

0.0

0.0

2

117.0

115.471

0.0

0.0

94.4

3

134.0

135.936

0.0

0.0

0.0

4

214.0

213.541

0.0

0.0

0.0

5

416.0

417.332

0.0

0.0

0.0

6

434.813

0.0

24.1

0.0

7

464.097

0.0

0.0

0.0

8

553.0

557.262

0.0

0.0

0.3

9

821.0

821.746

0.0

18.0

0.0

10

847.071

0.0

0.0

0.0

11

927.0

978.174

1.6

0.0

0.0

12

991.842

0.0

2.2

0.0

13

1021.669

1.8

0.0

0.0

14

1040.240

0.0

0.0

0.0

15

1056.948

0.0

0.0

0.2

16

1088.861

0.0

18.8

0.0

17

1093.157

1.2

0.0

0.0

18

1107.870

0.0

0.0

0.0

Identification

Values obtained with combination

quadratic directions of excitations

Of NEWMARK of the directions of the excitations

Displacement:

\(\mathrm{N17}\) \(\mathrm{DX}(m)\)

3.4246E-04

3.4265E-04

\(\mathrm{DY}(m)\)

4.3562E-06

4.8392E-06

\(\mathrm{DZ}(m)\)

3.0321E-04

3.0324E-04

\(\mathrm{DRX}(\mathrm{rad})\)

3.7031E-04

3.7612E-04

\(\mathrm{DRY}(\mathrm{rad})\)

4.7665E-05

5.2602E-05

\(\mathrm{DRZ}(\mathrm{rad})\)

5.1104E-04

5.2310E-04

Reactions:

\(\mathrm{N25}\) \(\mathrm{FX}(N)\)

1.2536E+03

1.2790E+03

\(\mathrm{FY}(N)\)

1.2473E+03

1.3868E+03

\(\mathrm{FZ}(N)\)

1.2196E+03

1.2441E+03

\(\mathrm{MX}(\mathrm{N.m})\)

3.2474E+02

3.2789E+02

\(\mathrm{MY}(\mathrm{N.m})\)

4.1310E+00

4.5579E+00

\(\mathrm{MZ}(\mathrm{N.m})\)

3.4846E+02

3.5199E+02

Efforts:

\(1019\) \(\mathrm{N17}\) \(\mathrm{FX}(N)\)

1.1312E+03

1.1486E+03

\(\mathrm{FY}(N)\)

1.2431E+03

1.3793E+03

\(\mathrm{FZ}(N)\)

1.0982E+03

1.1141E+03

\(\mathrm{MX}(\mathrm{N.m})\)

2.2833E+02

2.2982E+02

\(\mathrm{MY}(\mathrm{N.m})\)

4.1301E+00

4.5580E+00

\(\mathrm{MZ}(\mathrm{N.m})\)

2.2068E+02

2.2537E+02

\(1009\) \(\mathrm{N17}\) \(\mathrm{FX}(N)\)

1.8813E+02

2.0079E+02

\(\mathrm{FY}(N)\)

1.0419E+03

1.0650E+03

\(\mathrm{FZ}(N)\)

1.3175E+02

1.4833E+02

\(\mathrm{MX}(\mathrm{N.m})\)

2.2833E+02

2.2975E+02

\(\mathrm{MY}(\mathrm{N.m})\)

2.9165E+01

3.2490E+01

\(\mathrm{MZ}(\mathrm{N.m})\)

1.6408E-01

1.6400E-01

\(1008\) \(\mathrm{N17}\) \(\mathrm{FX}(N)\)

2.9587E+02

3.3579E+02

\(\mathrm{FY}(N)\)

6.3879E+02

6.7526E+02

\(\mathrm{FZ}(N)\)

2.6539E+02

2.7947E+02

\(\mathrm{MX}(\mathrm{N.m})\)

1.8400E-01

1.8500E-01

\(\mathrm{MY}(\mathrm{N.m})\)

3.2361E+01

3.5570E+01

\(\mathrm{MZ}(\mathrm{N.m})\)

2.2068E+02

2.2535E+02

notes

  • The movements of corners \((\mathrm{N9},\mathrm{N12},\mathrm{N17},\mathrm{N20})\) are the same,

  • The reactions to the \((\mathrm{N25},\mathrm{N26},\mathrm{N27},\mathrm{N28})\) supporters are the same,

  • Generalized efforts are expressed in the global benchmark.

2.3. Bibliographical references#

  1. NEUBERT V.H. and EZELL W. H.: Dynamic behavior of a foundation like structure. ASME Colloquium on Mechanical Impedance Methods for Mechanical Vibrations, pp. 77-86, 1958.

  2. HERCULE: finite element calculation code for building structures developed by SOCOTEC.