2. Benchmark solution#

2.1. Calculation method used for the reference solution#

The Rayleigh method applied to slender straight beam elements and to a thin curved beam element makes it possible to determine parameters such as:

  • bending in the plane: \({f}_{i}\mathrm{=}\frac{{\lambda }_{i}^{2}}{2\pi {R}^{2}}\sqrt{\frac{E{I}_{z}}{\rho A}}\) \(i\mathrm{=}\mathrm{1,2}\);

  • transverse flexure: \({f}_{i}\mathrm{=}\frac{{\mu }_{i}^{2}}{2\pi {R}^{2}}\sqrt{\frac{G{I}_{p}}{\rho A}}\) \(i=\mathrm{1,2}\);

The values \({\lambda }_{i}^{2}\) and \({\mu }_{i}^{2}\) are taken from an abacus.

This formulation can only be used for very slender pipes:

  • Slender right parts greater than \(\frac{l}{{d}_{e}}>20\)

  • Thin elbow such as \(\alpha R>100\sqrt{\frac{{I}_{z}}{A}}\) with \(\alpha\), center angle in radians. It is not necessary to use an elbow flexibility coefficient here.

2.2. Benchmark results#

  • First four natural frequencies,

  • Four first natural modes (2 transverse modes, 2 modes in the plane).

  • Frequency (transverse mode 1)

\(17.9\mathrm{Hz}\)

  • Frequency (mode in plan 1)

\(24.8\mathrm{Hz}\)

  • Frequency (transverse mode 2)

\(25.3\mathrm{Hz}\)

  • Frequency (mode in plan 1)

\(27.0\mathrm{Hz}\)

Table 2.2-1

2.3. Bibliographical references#

  1. VPCS: Guide to the validation of structural calculation software packages: « test SDLL14 », SFM, AFNOR technique.

  2. R.D. Blevins, formulas for natural frequency and mode shape, New York, Van Nostrand, 1979, p. 215.