3. Modeling A#
3.1. Characteristics of modeling#
We use the Euler Bernouilli POU_D_E beam element
3 beams: |
\(\mathrm{ABC}\), \(\text{DEF}\), \(\mathrm{HGI}\) each cut into 10 meshes SEG2 Nodes \((B,H)\) and \((E,I)\) have the same coordinates. |
Boundary conditions: |
|
beams \(\mathrm{ABC}\) and \(\text{DEF}\) |
|
DDL_IMPO:
|
( GROUP_NO: (PABC, PDEF) DX: 0., DY: 0., DRY: 0. )
( GROUP_NO: (PHGI) DX: 0., DY: 0., DRX: 0. )
( GROUP_NO: (NACDF) DZ: 0. )
|
DDL_link:
|
|
Node names: |
\(A=\mathrm{N1}\) |
|
|
\(D=\mathrm{N21}\) |
|
|
|
\(H=\mathrm{N41}\) |
|
|
3.2. Characteristics of the mesh#
Number of knots: |
33 |
Number of meshes and types: |
3*10 = 30 SEG2 |
3.3. notes#
The blocking of the degrees of freedom \(\mathrm{DX}\) and \(\mathrm{DY}\) at all the nodes makes it possible to select only the transverse flexure modes (in the « vertical » plane).
3.4. Tested sizes and results#
Frequency ( \(\mathrm{Hz}\) )
Clean mode order |
Reference |
Aster |
% difference |
1 2 |
16.456 38.165 |
16.4190 38.0468 |
—0.22 —0.31 |
Clean mode: value of \({W}_{B}/{W}_{G}\)
Symmetric eigenmode order |
Reference |
Aster* |
% difference |
1 2 |
1.213 —0.412 |
1.213 —0.412 |
0. 0. |
\({W}_{B}=\mathrm{DZ}\) in \(B\) (\(\mathrm{N6}\)) |
\({W}_{G}+{W}_{B}=\mathrm{DZ}\) in \(G\) (\(\mathrm{N46}\)) |
|
mode 1: |
\({W}_{B}=0.5480\) |
|
mode 2: |
\({W}_{B}=–0.6698\) |
|
Harmonic response:
Point |
Value type ( \(m\) ) |
Reference |
Aster |
% difference |
\(B,E\) \(G\) \(G\) |
\({W}_{G}\mathrm{max}\ast\) \({W}_{B}+{W}_{G}\mathrm{max}\) |
—0.098 —0.125 —0.227 |
—0.1003 —0.1271 —0.2274 |
2.45 1.60 0.18 |
3.5. notes#
Calculations made by:
CALC_MODES
OPTION = “PLUS_PETITE” CALC_FREQ =_F (NMAX_FREQ = 3) SOLVEUR_MODAL =_F (METHODE = “TRI_DIAG”)
An antisymmetric mode is obtained for a frequency \(f=22.5676\mathrm{Hz}\). This natural frequency depends on the torsional constant provided; this is not defined in the reference data.
The \({W}_{B}/{W}_{G}\) values are not verified in the test but are obtained manually from \({W}_{B}\) and \({W}_{G}+{W}_{B}\).
The (WG) max value is not checked in the test. We only have access to \({W}_{B}\mathrm{max}\) and \(({W}_{B}+{W}_{G})\mathrm{max}\). \({W}_{G}\mathrm{max}\) is obtained manually by difference.
Contents of the results file:
First 3 natural frequencies, displacement of the \(B,E,G\) nodes in harmonic response.