Modeling A ============== Characteristics of modeling ----------------------------------- We use the Euler Bernouilli POU_D_E beam element .. image:: images/1000113E000019F1000011286EA9EF6A07FE2E5D.svg :width: 334 :height: 221 .. _RefImage_1000113E000019F1000011286EA9EF6A07FE2E5D.svg: .. csv-table:: "3 beams:", ":math:`\mathrm{ABC}`, :math:`\text{DEF}`, :math:`\mathrm{HGI}` each cut into 10 meshes SEG2 Nodes :math:`(B,H)` and :math:`(E,I)` have the same coordinates." +-------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |Boundary conditions: | | +-------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |beams :math:`\mathrm{ABC}` and :math:`\text{DEF}` | | +-------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |DDL_IMPO: | .. code:: | + + + | beam :math:`\mathrm{HGI}` knots ends | ( GROUP_NO: (PABC, PDEF) DX: 0., DY: 0., DRY: 0. ) | + + + | | ( GROUP_NO: (PHGI) DX: 0., DY: 0., DRX: 0. ) | + + + | | ( GROUP_NO: (NACDF) DZ: 0. ) | +-------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | | | +-------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |DDL_link: |:math:`{\mathrm{DZ}}_{B}–{\mathrm{DZ}}_{H}=0.` | + + and + | nodal_force: | :math:`{\mathrm{DZ}}_{E}–{\mathrm{DZ}}_{I}=0.` | + + + | | Node: :math:`G` :math:`\mathrm{Fz}`: :math:`–1.E5` | + + + | | | +-------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ .. csv-table:: "Node names:", ":math:`A=\mathrm{N1}` "," :math:`B=\mathrm{N6}` "," :math:`C=\mathrm{N11}`" "", ":math:`D=\mathrm{N21}` "," :math:`E=\mathrm{N26}` "," :math:`F=\mathrm{N31}`" "", ":math:`H=\mathrm{N41}` "," :math:`G=\mathrm{N46}` "," :math:`I=\mathrm{N51}`" Characteristics of the mesh ---------------------------- .. csv-table:: "Number of knots:", "33" "Number of meshes and types:", "3*10 = 30 SEG2" notes --------- The blocking of the degrees of freedom :math:`\mathrm{DX}` and :math:`\mathrm{DY}` at all the nodes makes it possible to select only the transverse flexure modes (in the "vertical" plane). Tested sizes and results ------------------------------ **Frequency (** :math:`\mathrm{Hz}` **)** .. csv-table:: "**Clean mode order**", "**Reference**", "**Aster**", "**% difference**" "1 2", "16.456 38.165", "16.4190 38.0468", "—0.22 —0.31" **Clean mode: value of** :math:`{W}_{B}/{W}_{G}` .. csv-table:: "**Symmetric eigenmode order**", "**Reference**", "**Aster***", "**% difference**" "1 2", "1.213 —0.412", "1.213 —0.412", "0. 0." .. csv-table:: "*", ":math:`{W}_{B}=\mathrm{DZ}` in :math:`B` (:math:`\mathrm{N6}`)", ":math:`{W}_{G}+{W}_{B}=\mathrm{DZ}` in :math:`G` (:math:`\mathrm{N46}`)" "mode 1:", ":math:`{W}_{B}=0.5480` "," :math:`{W}_{G}+{W}_{B}=1.`" "mode 2:", ":math:`{W}_{B}=–0.6698` "," :math:`{W}_{G}+{W}_{B}=0.9559`" **Harmonic response:** .. csv-table:: "**Point**", "**Value type** **(** :math:`m` **)**", "**Reference**", "**Aster**", "**% difference**" ":math:`B,E` :math:`G` :math:`G` "," :math:`{W}_{B}\mathrm{max}` :math:`{W}_{G}\mathrm{max}\ast` :math:`{W}_{B}+{W}_{G}\mathrm{max}` ", "—0.098 —0.125 —0.227", "—0.1003 —0.1271 —0.2274", "2.45 1.60 0.18" notes --------- Calculations made by: .. code-block:: text CALC_MODES OPTION = 'PLUS_PETITE' CALC_FREQ =_F (NMAX_FREQ = 3) SOLVEUR_MODAL =_F (METHODE = 'TRI_DIAG') An antisymmetric mode is obtained for a frequency :math:`f=22.5676\mathrm{Hz}`. This natural frequency depends on the torsional constant provided; this is not defined in the reference data. The :math:`{W}_{B}/{W}_{G}` values are not verified in the test but are obtained manually from :math:`{W}_{B}` and :math:`{W}_{G}+{W}_{B}`. The (WG) max value is not checked in the test. We only have access to :math:`{W}_{B}\mathrm{max}` and :math:`({W}_{B}+{W}_{G})\mathrm{max}`. :math:`{W}_{G}\mathrm{max}` is obtained manually by difference. **Contents of the results file:** First 3 natural frequencies, displacement of the :math:`B,E,G` nodes in harmonic response.