1. Reference problem#
1.1. Geometry#
This is a problem originally proposed in the reference [bib1] and included in [bib2].
beam \(\mathrm{AB}\): slender, massless beam with a length \(\mathrm{AB}\), \(l=\mathrm{10 }m\) and a moment of inertia \({I}_{Z}=\mathrm{0,3285}{m}^{4}\).
point mass in \(B\): \(m=\mathrm{43,8}{10}^{\mathrm{3 }}\mathrm{kg}\)
1.2. Material properties#
Young’s module: |
\(E=4.{10}^{10}\mathrm{Pa}\) |
Density: |
\(\rho =0\mathrm{kg}/{m}^{3}\) |
1.3. Boundary conditions and loads#
Boundary conditions:
The only authorized movements are translations according to axis \(x\).
Point \(A\) is embedded: \(\mathrm{dx}=\mathrm{dy}=\mathrm{dz}=\mathrm{drx}=\mathrm{dry}=\mathrm{drz}=0\).
Loads:
modeling A: transverse acceleration at point A: \(\gamma (t)\)
B modeling: transverse force at point \(B\): \(\mathrm{Fx}(t)\) with \(\mathrm{Fx}(t)=–\mathrm{m.}\gamma (t)\)
1.4. Initial conditions#
The system is at rest: at \(t=0\), \(\mathrm{dx}(0)=0\), \(\mathrm{dx}/\mathrm{dt}(0)=0\) at all points.