Reference problem ===================== Geometry --------- This is a problem originally proposed in the reference [:ref:`bib1 `] and included in [:ref:`bib2 `]. .. image:: images/10002198000069D500003D7F40D866C729DE86F7.svg :width: 475 :height: 276 .. _RefImage_10002198000069D500003D7F40D866C729DE86F7.svg: * beam :math:`\mathrm{AB}`: slender, massless beam with a length :math:`\mathrm{AB}`, :math:`l=\mathrm{10 }m` and a moment of inertia :math:`{I}_{Z}=\mathrm{0,3285}{m}^{4}`. * point mass in :math:`B`: :math:`m=\mathrm{43,8}{10}^{\mathrm{3 }}\mathrm{kg}` Material properties ------------------------ .. csv-table:: "Young's module:", ":math:`E=4.{10}^{10}\mathrm{Pa}`" "Density:", ":math:`\rho =0\mathrm{kg}/{m}^{3}`" Boundary conditions and loads ------------------------------------- **Boundary conditions:** The only authorized movements are translations according to axis :math:`x`. Point :math:`A` is embedded: :math:`\mathrm{dx}=\mathrm{dy}=\mathrm{dz}=\mathrm{drx}=\mathrm{dry}=\mathrm{drz}=0`. **Loads:** * modeling A: transverse acceleration at point A: :math:`\gamma (t)` .. image:: images/1000096200002834000009B79EBACC0FC9A77866.svg :width: 475 :height: 276 .. _RefImage_1000096200002834000009B79EBACC0FC9A77866.svg: * B modeling: transverse force at point :math:`B`: :math:`\mathrm{Fx}(t)` with :math:`\mathrm{Fx}(t)=–\mathrm{m.}\gamma (t)` Initial conditions -------------------- The system is at rest: at :math:`t=0`, :math:`\mathrm{dx}(0)=0`, :math:`\mathrm{dx}/\mathrm{dt}(0)=0` at all points.