1. Reference problem#
1.1. Geometry#
The structure is modelled by a set of 3 springs and 2 point masses.

1.2. Material properties#
Link stiffness: \({k}_{1}={k}_{3}=k=\mathrm{100000 }N/m\); \({k}_{2}=2k=200000N/m\)
Point mass: \({m}_{2}={m}_{3}=m=2533\mathrm{kg}\).
1.3. Boundary conditions and loads#
boundary conditions
The only authorized movements are translations according to axis \(x\).
Points \(\mathrm{NO1}\) and \(\mathrm{NO4}\) are embedded:
\(\mathrm{DX}=\mathrm{DY}=\mathrm{DZ}=\mathrm{DRX}=\mathrm{DRY}=\mathrm{DRZ}=0\).
The other points are free to translate in the direction \(x\):
\(\mathrm{DY}=\mathrm{DZ}=\mathrm{DRX}=\mathrm{DRY}=\mathrm{DRZ}=0\).
load
Modeling A: the structure is subjected to a decorrelated multiple spectral seismic excitation.
The pseudo-acceleration oscillator response spectra are defined by:
at node \(\mathrm{NO1}\): \({\mathrm{SRO}}_{\mathrm{NO1}}=\frac{{a}_{1}{\omega }^{2}}{∣{\omega }_{1}^{2}-{\omega }^{2}∣}\)
at node \(\mathrm{NO4}\): \({\mathrm{SRO}}_{\mathrm{NO4}}=\frac{{a}_{2}{\omega }^{2}}{∣{\omega }_{2}^{2}-{\omega }^{2}∣}\)
with \({\omega }_{1}=2\pi {f}_{1}\) \({\omega }_{2}=2\pi {f}_{2}\)
\({f}_{1}=1.5\mathrm{Hz}\), \({f}_{2}=2.\mathrm{Hz}\), \({a}_{1}={a}_{2}=0.5{\mathrm{ms}}^{\text{-2}}\)
They do not depend on depreciation.
B modeling: the structure is subjected to seismic excitation identical to both supports.
The pseudo-acceleration oscillator response spectrum is defined by:
at node \(\mathrm{NO1}\) and at node \(\mathrm{NO4}\): \(\mathrm{SRO}=\frac{{a}_{1}{\omega }^{2}}{∣{\omega }_{1}^{2}-{\omega }^{2}∣}\)
with \({\omega }_{1}=2\pi {f}_{1}\)
\({f}_{1}=1.5\mathrm{Hz}\), \({a}_{1}=0.5{\mathrm{ms}}^{\text{-2}}\)
It does not depend on depreciation.
1.4. Initial conditions#
The system is initially at rest