Reference problem ===================== Geometry --------- The structure is modelled by a set of 3 springs and 2 point masses. .. image:: images/10000000000002740000009E15092525028A2B97.png :width: 4.8681in :height: 1.2543in .. _RefImage_10000000000002740000009E15092525028A2B97.png: Material properties ---------------------- * Link stiffness: :math:`{k}_{1}={k}_{3}=k=\mathrm{100000 }N/m`; :math:`{k}_{2}=2k=200000N/m` * Point mass: :math:`{m}_{2}={m}_{3}=m=2533\mathrm{kg}`. Boundary conditions and loads ------------------------------------- * **boundary conditions** The only authorized movements are translations according to axis :math:`x`. Points :math:`\mathrm{NO1}` and :math:`\mathrm{NO4}` are embedded: :math:`\mathrm{DX}=\mathrm{DY}=\mathrm{DZ}=\mathrm{DRX}=\mathrm{DRY}=\mathrm{DRZ}=0`. The other points are free to translate in the direction :math:`x`: :math:`\mathrm{DY}=\mathrm{DZ}=\mathrm{DRX}=\mathrm{DRY}=\mathrm{DRZ}=0`. * **load** *Modeling A*: the structure is subjected to a decorrelated multiple spectral seismic excitation. The pseudo-acceleration oscillator response spectra are defined by: * at node :math:`\mathrm{NO1}`: :math:`{\mathrm{SRO}}_{\mathrm{NO1}}=\frac{{a}_{1}{\omega }^{2}}{∣{\omega }_{1}^{2}-{\omega }^{2}∣}` * at node :math:`\mathrm{NO4}`: :math:`{\mathrm{SRO}}_{\mathrm{NO4}}=\frac{{a}_{2}{\omega }^{2}}{∣{\omega }_{2}^{2}-{\omega }^{2}∣}` with :math:`{\omega }_{1}=2\pi {f}_{1}` :math:`{\omega }_{2}=2\pi {f}_{2}` :math:`{f}_{1}=1.5\mathrm{Hz}`, :math:`{f}_{2}=2.\mathrm{Hz}`, :math:`{a}_{1}={a}_{2}=0.5{\mathrm{ms}}^{\text{-2}}` They do not depend on depreciation. *B* modeling: the structure is subjected to seismic excitation identical to both supports. The pseudo-acceleration oscillator response spectrum is defined by: * at node :math:`\mathrm{NO1}` and at node :math:`\mathrm{NO4}`: :math:`\mathrm{SRO}=\frac{{a}_{1}{\omega }^{2}}{∣{\omega }_{1}^{2}-{\omega }^{2}∣}` with :math:`{\omega }_{1}=2\pi {f}_{1}` :math:`{f}_{1}=1.5\mathrm{Hz}`, :math:`{a}_{1}=0.5{\mathrm{ms}}^{\text{-2}}` It does not depend on depreciation. Initial conditions -------------------- The system is initially at rest