4. B modeling#
4.1. Characteristics of B modeling#
The system is modelled by:
3 discrete elements K_T_D_L,
2 discrete M_T_D_N elements.
4.2. Characteristics of the mesh#
The mesh consists of 3 SEG2 meshes.
4.3. Tested sizes and results#
4.3.1. Natural frequencies#
MODE |
Reference |
Tolerance \((\text{\%})\) |
\(1\) |
|
|
\(2\) |
|
|
4.3.2. Static training modes#
Fashion \(1\): absolute movements \(\mathrm{DEPL}\)
NOEUD |
Reference |
Tolerance \((\text{\%})\) |
\(\mathrm{NO2}\) |
|
|
\(\mathrm{NO3}\) |
|
|
Fashion \(2\): absolute movements \(\mathrm{DEPL}\)
NOEUD |
Reference |
Tolerance \((\text{\%})\) |
\(\mathrm{NO2}\) |
|
|
\(\mathrm{NO3}\) |
|
|
4.3.3. Static modes for static correction#
Fashion \(1\): absolute movements \(\mathrm{DEPL}\)
NOEUD |
Reference |
Tolerance \((\text{\%})\) |
\(\mathrm{NO2}\) |
|
|
\(\mathrm{NO3}\) |
|
|
Fashion \(2\): absolute movements \(\mathrm{DEPL}\)
NOEUD |
Reference |
Tolerance \((\text{\%})\) |
\(\mathrm{NO2}\) |
|
|
\(\mathrm{NO3}\) |
|
|
4.3.4. Global response on a full modal basis#
4.3.4.1. Global response on a complete modal basis (single-support calculation)#
The \(1\) and \(2\) modes are taken into account.
calculation \(n°1\)
COMB_MODE =” SRSS “
For each active \(\mathrm{ddl}\) \(2\) and \(\mathrm{3 }\):
\(\mathrm{1 }\) mode response: \({R}_{1}={\mathrm{Rm}}_{11}+{\mathrm{Rm}}_{12}\)
\(\mathrm{2 }\) mode response: \({R}_{2}={\mathrm{Rm}}_{21}+{\mathrm{Rm}}_{22}\)
global response: \(R=\sqrt{{R}_{1}^{2}+{R}_{2}^{2}}\) (cumulative mode)
absolute displacements: \(\mathrm{DEPL}\)
NOEUD |
Reference |
Tolerance \((\text{\%})\) |
\(\mathrm{NO2}\) |
|
|
\(\mathrm{NO3}\) |
|
|
Global response on a complete modal basis (single-support calculation via a multi-support calculation correlated with the same \({\mathit{SRO}}_{\mathit{NO}1}\) spectrum at both supports) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The \(1\) and \(2\) modes are taken into account.
calculation \(n°2\)
COMB_MODE =” SRSS “
For each active \(\mathrm{ddl}\) \(2\) and \(\mathrm{3 }\):
\(\mathrm{1 }\) mode response: \({R}_{1}={\mathrm{Rm}}_{11}+{\mathrm{Rm}}_{12}\)
\(\mathrm{2 }\) mode response: \({R}_{2}={\mathrm{Rm}}_{21}+{\mathrm{Rm}}_{22}\)
global response: \(R=\sqrt{{R}_{1}^{2}+{R}_{2}^{2}}\) (cumulative mode)
absolute displacements: \(\mathrm{DEPL}\)
NOEUD |
Reference |
Tolerance \((\text{\%})\) |
\(\mathrm{NO2}\) |
|
|
\(\mathrm{NO3}\) |
|
|