3. A and B modeling#
3.1. Characteristics of the models#
The concrete veil is represented by elements DKT for modeling A and by elements Q4GG for modeling B, supported in both cases by quadrangle cells with 4 nodes: there are 10 cells on a vertical generator and 32 on a horizontal semicircle. With this layout, the meshes have dimensions close to those of a square with a side of \(1m\).
All of the following are common to both A and B models.
A thickness \(e\mathrm{=}\mathrm{0,6}m\) is assigned to all the meshes of the veil, as well as a concrete material for which the behaviors ELAS and BPEL_BETON are defined: the parameters take the values given previously in paragraph [§ 2.2.1].
Each of the cables is represented by 128 MECA_BARRE elements, supported by 2-node segment meshes. On a horizontal semicircle, there are therefore 4 times more meshes on a cable than on the concrete web.
A cross-sectional area \({S}_{a}\mathrm{=}\mathrm{1,5}{.10}^{\mathrm{-}4}{m}^{2}\) is assigned to all cable meshes, as well as a steel material for which the behaviors ELAS and BPEL_ACIER are defined: the parameters take the values given earlier in paragraph [§ 2.2.2].
Voltage \({F}_{0}\mathrm{=}{2.10}^{5}N\) is applied to the two end nodes of each cable. The value of this tension is consistent with the values of cross section and elastic limit stress, for stranded pretension cables. The evaluation of tension losses due to relaxation and recoil at the anchors is carried out in accordance with the rules of BPEL; the parameters take the values given earlier in paragraph [§ 2.2.3].
Since the same tension is applied to both ends of each cable, and since the same setback is imposed on the anchors, the tension profiles obtained must be symmetric with respect to the middle nodes of the cables.
Taking into account the geometric characteristics and the mesh, the nodes of cables No. 1 and No. 2 project onto the summit nodes and the edges of the meshes of the concrete web. For the nodes of these two cables, the projection indices obtained must be in accordance with the following sequence: 2 for the first node, then \(13-13-13-2\) until the last node.
The nodes of cables No. 3 and No. 4 are projected on the edges and inside the meshes of the concrete veil. For the nodes of these two cables, the projection indices obtained must be in accordance with the following sequence: 14 for the first node, then \(0-0-0-12\) to the last node.
The rule for assigning the projection index is defined earlier in paragraph [§ 3.3].
Given the characteristics of the mesh, the eccentricities of the cable nodes are evaluated using the expression in paragraph [§ 3.4] with \(\alpha \mathrm{=}\frac{\pi }{32}\) and \(\beta \mathrm{=}\mathrm{0,}\frac{\alpha }{4},\frac{\alpha }{2},\frac{3\alpha }{4}\).
3.2. Tested sizes and results#
3.2.1. Curvilinear abscissa#
The tested component is ABS_CURV.
Identification (node) |
Reference type |
Reference value [\(m\) ] |
Tolerance ( \(\text{\%}\) ) |
NC001032 |
“ANALYTIQUE” |
7,608545.100 |
|
NC001033 |
“ANALYTIQUE” |
7,853982.100 |
|
NC001034 |
“ANALYTIQUE” |
8,099419.100 |
|
NC001064 |
“ANALYTIQUE” |
1,546253.101 |
|
NC001065 |
“ANALYTIQUE” |
1,570796.101 |
|
NC001066 |
“ANALYTIQUE” |
1,595340.101 |
|
NC001096 |
“ANALYTIQUE” |
2,331651.101 |
|
NC001097 |
“ANALYTIQUE” |
2,356194.101 |
|
NC001098 |
“ANALYTIQUE” |
2,380738.101 |
|
NC002032 |
“ANALYTIQUE” |
7,608545.100 |
|
NC002033 |
“ANALYTIQUE” |
7,853982.100 |
|
NC002034 |
“ANALYTIQUE” |
8,099419.100 |
|
NC002064 |
“ANALYTIQUE” |
1,546253.101 |
|
NC002065 |
“ANALYTIQUE” |
1,570796.101 |
|
NC002066 |
“ANALYTIQUE” |
1,595340.101 |
|
NC002096 |
“ANALYTIQUE” |
2,331651.101 |
|
NC002097 |
“ANALYTIQUE” |
2,356194.101 |
|
NC002098 |
“ANALYTIQUE” |
2,380738.101 |
|
NC003032 |
“ANALYTIQUE” |
7,646587.100 |
|
NC003033 |
“ANALYTIQUE” |
7,893252.100 |
|
NC003034 |
“ANALYTIQUE” |
8,139916.100 |
|
NC003064 |
“ANALYTIQUE” |
1,553984.101 |
|
NC003065 |
“ANALYTIQUE” |
1,578650.101 |
|
NC003066 |
“ANALYTIQUE” |
1,603317.101 |
|
NC003096 |
“ANALYTIQUE” |
2,343309.101 |
|
NC003097 |
“ANALYTIQUE” |
2,367975.101 |
|
NC003098 |
“ANALYTIQUE” |
2,392642.101 |
|
NC004032 |
“ANALYTIQUE” |
7,684630.100 |
|
NC004033 |
“ANALYTIQUE” |
7,932521.100 |
|
NC004034 |
“ANALYTIQUE” |
8,180413.100 |
|
NC004064 |
“ANALYTIQUE” |
1,561715.101 |
|
NC004065 |
“ANALYTIQUE” |
1,586504.101 |
|
NC004066 |
“ANALYTIQUE” |
1,611293.101 |
|
NC004096 |
“ANALYTIQUE” |
2,354967.101 |
|
NC004097 |
“ANALYTIQUE” |
2,379756.101 |
|
NC004098 |
“ANALYTIQUE” |
2,404546.101 |
|
3.2.2. Cumulative angular deviation#
The tested component is ALPHA.
Identification (node) |
Reference type |
Reference value [\(\mathrm{rad}\) ] |
Tolerance ( \(\text{\%}\) ) |
NC001032 |
“ANALYTIQUE” |
7,608545.10—1 |
|
NC001033 |
“ANALYTIQUE” |
7,853982.10—1 |
|
NC001034 |
“ANALYTIQUE” |
8,099419.10—1 |
|
NC001064 |
“ANALYTIQUE” |
1,546253.100 |
|
NC001065 |
“ANALYTIQUE” |
1,570796.100 |
|
NC001066 |
“ANALYTIQUE” |
1,595340.100 |
|
NC001096 |
“ANALYTIQUE” |
2,331651.100 |
|
NC001097 |
“ANALYTIQUE” |
2,356194.100 |
|
NC001098 |
“ANALYTIQUE” |
2,380738.100 |
|
NC002032 |
“ANALYTIQUE” |
7,608545.10—1 |
|
NC002033 |
“ANALYTIQUE” |
7,853982.10—1 |
|
NC002034 |
“ANALYTIQUE” |
8,099419.10—1 |
|
NC002064 |
“ANALYTIQUE” |
1,546253.100 |
|
NC002065 |
“ANALYTIQUE” |
1,570796.100 |
|
NC002066 |
“ANALYTIQUE” |
1,595340.100 |
|
NC002096 |
“ANALYTIQUE” |
2,331651.100 |
|
NC002097 |
“ANALYTIQUE” |
2,356194.100 |
|
NC002098 |
“ANALYTIQUE” |
2,380738.100 |
|
NC003032 |
“ANALYTIQUE” |
7,608545.10—1 |
|
NC003033 |
“ANALYTIQUE” |
7,853982.10—1 |
|
NC003034 |
“ANALYTIQUE” |
8,099419.10—1 |
|
NC003064 |
“ANALYTIQUE” |
1,546253.100 |
|
NC003065 |
“ANALYTIQUE” |
1,570796.100 |
|
NC003066 |
“ANALYTIQUE” |
1,595340.100 |
|
NC003096 |
“ANALYTIQUE” |
2,331651.100 |
|
NC003097 |
“ANALYTIQUE” |
2,356194.100 |
|
NC003098 |
“ANALYTIQUE” |
2,380738.100 |
|
NC004032 |
“ANALYTIQUE” |
7,608545.10—1 |
|
NC004033 |
“ANALYTIQUE” |
7,853982.10—1 |
|
NC004034 |
“ANALYTIQUE” |
8,099419.10—1 |
|
NC004064 |
“ANALYTIQUE” |
1,546253.100 |
|
NC004065 |
“ANALYTIQUE” |
1,570796.100 |
|
NC004066 |
“ANALYTIQUE” |
1,595340.100 |
|
NC004096 |
“ANALYTIQUE” |
2,331651.100 |
|
NC004097 |
“ANALYTIQUE” |
2,356194.100 |
|
NC004098 |
“ANALYTIQUE” |
2,380738.100 |
|
3.2.3. Normal effort in the cables#
The tested component is TENSION.
Identification (node) |
Reference type |
Reference value [\(N\) ] |
Tolerance **** (%) ** |
NC001032 |
“ANALYTIQUE” |
1,334446.105 |
|
NC001033 |
“ANALYTIQUE” |
1,325720.105 |
|
NC001034 |
“ANALYTIQUE” |
1,317036.105 |
|
NC001064 |
“ANALYTIQUE” |
1,076002.105 |
|
NC001065 |
“ANALYTIQUE” |
1,068586.105 |
|
NC001066 |
“ANALYTIQUE” |
1,076002.105 |
|
NC001096 |
“ANALYTIQUE” |
1,317036.105 |
|
NC001097 |
“ANALYTIQUE” |
1,325720.105 |
|
NC001098 |
“ANALYTIQUE” |
1,334446.105 |
|
NC002032 |
“ANALYTIQUE” |
1,334446.105 |
|
NC002033 |
“ANALYTIQUE” |
1,325720.105 |
|
NC002034 |
“ANALYTIQUE” |
1,317036.105 |
|
NC002064 |
“ANALYTIQUE” |
1,076002.105 |
|
NC002065 |
“ANALYTIQUE” |
1,068586.105 |
|
NC002066 |
“ANALYTIQUE” |
1,076002.105 |
|
NC002096 |
“ANALYTIQUE” |
1,317036.105 |
|
NC002097 |
“ANALYTIQUE” |
1,325720.105 |
|
NC002098 |
“ANALYTIQUE” |
1,334446.105 |
|
NC003032 |
“ANALYTIQUE” |
1,334270.105 |
|
NC003033 |
“ANALYTIQUE” |
1,325538.105 |
|
NC003034 |
“ANALYTIQUE” |
1,316850.105 |
|
NC003064 |
“ANALYTIQUE” |
1,075696.105 |
|
NC003065 |
“ANALYTIQUE” |
1,068278.105 |
|
NC003066 |
“ANALYTIQUE” |
1,075696.105 |
|
NC003096 |
“ANALYTIQUE” |
1,316850.105 |
|
NC003097 |
“ANALYTIQUE” |
1,325538.105 |
|
NC003098 |
“ANALYTIQUE” |
1,334270.105 |
|
NC004032 |
“ANALYTIQUE” |
1,334093.105 |
|
NC004033 |
“ANALYTIQUE” |
1,325356.105 |
|
NC004034 |
“ANALYTIQUE” |
1,316664.105 |
|
NC004064 |
“ANALYTIQUE” |
1,075391.105 |
|
NC004065 |
“ANALYTIQUE” |
1,067969.105 |
|
NC004066 |
“ANALYTIQUE” |
1,075391.105 |
|
NC004096 |
“ANALYTIQUE” |
1,316664.105 |
|
NC004097 |
“ANALYTIQUE” |
1,325356.105 |
|
NC004098 |
“ANALYTIQUE” |
1,334093.105 |
|
3.2.4. Projection index#
The tested component is INDICE_PROJECTION.
Identification (node) |
Reference type |
Reference value |
Tolerance |
NC001032 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC001033 |
“ANALYTIQUE” |
2 |
1.00E-003 |
NC001034 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC001064 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC001065 |
“ANALYTIQUE” |
2 |
1.00E-003 |
NC001066 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC001096 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC001097 |
“ANALYTIQUE” |
2 |
1.00E-003 |
NC001098 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC002032 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC002033 |
“ANALYTIQUE” |
12 |
1.00E-003 |
NC002034 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC002064 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC002065 |
“ANALYTIQUE” |
12 |
1.00E-003 |
NC002066 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC002096 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC002097 |
“ANALYTIQUE” |
12 |
1.00E-003 |
NC002098 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC003032 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC003033 |
“ANALYTIQUE” |
2 |
1.00E-003 |
NC003034 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC003064 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC003065 |
“ANALYTIQUE” |
2 |
1.00E-003 |
NC003066 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC003096 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC003097 |
“ANALYTIQUE” |
2 |
1.00E-003 |
NC003098 |
“ANALYTIQUE” |
13 |
1.00E-003 |
NC004032 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC004033 |
“ANALYTIQUE” |
12 |
1.00E-003 |
NC004034 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC004064 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC004065 |
“ANALYTIQUE” |
12 |
1.00E-003 |
NC004066 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC004096 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC004097 |
“ANALYTIQUE” |
12 |
1.00E-003 |
NC004098 |
“ANALYTIQUE” |
0 |
1.00E-003 |
3.2.5. Eccentricity#
The tested component is EXCENTRICITE.
Identification (node) |
Reference type |
Reference value [\(m\) ] |
Tolerance |
NC001032 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC001033 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC001034 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC001064 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC001065 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC001066 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC001096 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC001097 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC001098 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC002032 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC002033 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC002034 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC002064 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC002065 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC002066 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC002096 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC002097 |
“ANALYTIQUE” |
0 |
1.00E-003 |
NC002098 |
“ANALYTIQUE” |
9,033625.10—3 |
|
NC003032 |
“ANALYTIQUE” |
5,901857.10—2 |
|
NC003033 |
“ANALYTIQUE” |
5.10—2 |
|
NC003034 |
“ANALYTIQUE” |
5,901857.10—2 |
|
NC003064 |
“ANALYTIQUE” |
5,901857.10—2 |
|
NC003065 |
“ANALYTIQUE” |
5.10—2 |
|
NC003066 |
“ANALYTIQUE” |
5,901857.10—2 |
|
NC003096 |
“ANALYTIQUE” |
5,901857.10—2 |
|
NC003097 |
“ANALYTIQUE” |
5.10—2 |
|
NC003098 |
“ANALYTIQUE” |
5,901857.10—2 |
|
NC004032 |
“ANALYTIQUE” |
1,090035.10—1 |
|
NC004033 |
“ANALYTIQUE” |
10—1 |
|
NC004034 |
“ANALYTIQUE” |
1,090035.10—1 |
|
NC004064 |
“ANALYTIQUE” |
1,090035.10—1 |
|
NC004065 |
“ANALYTIQUE” |
10—1 |
|
NC004066 |
“ANALYTIQUE” |
1,090035.10—1 |
|
NC004096 |
“ANALYTIQUE” |
1,090035.10—1 |
|
NC004097 |
“ANALYTIQUE” |
10—1 |
|
NC004098 |
“ANALYTIQUE” |
1,090035.10—1 |
|
3.3. notes#
Relative differences for the cumulative angular deviation of an order of magnitude are obtained that are much higher than those obtained for the curvilinear abscissa, which is calculated with very good precision.
The cause is inherent in the cubic spline interpolation method used to interpolate cable paths. This method consists in interpolating the trajectory on each sub-interval by a 3rd order polynomial, guaranteeing the continuity of the first derivatives and the second derivatives across the sub-intervals. The interpolation of a circular trajectory by third-order polynomials is in itself an approximation, the effects of which are more sensitive on the second derivatives than on the first derivatives.
This is why the precision obtained for the curvilinear abscissa, calculated using the first derivatives of the trajectory, is much better than that obtained for the cumulative angular deviation, calculated using cross products between the first derivatives and the second derivatives. To improve the precision of the cumulative angular deviation, the mesh would have to be significantly refined: this approach is not valid a prima facie, because it would lead to very significant additional calculation costs for a low gain in precision.
In fact, tension profiles that are symmetric with respect to the middle nodes of the cables are obtained. The deviations by default on the curvilinear abscissa and the cumulative angular deviation induce differences by excess on the calculated voltage values, but the precision remains satisfactory: this validates the calculation method.
The projection indices obtained are in accordance with those expected, and the eccentricities are calculated with very good precision: this validates the projection operations.