4. Resolution strategy#
4.1. Newton-Raphson method#
The resolution strategy is nothing more than a simple Newton method. Unlike the case of touch-friction [R5.03.52] or [R5.03.54], there are no fixed point loops or sign fields. The only operation to be performed in addition to Newton’s iterations is therefore to update the internal variable.
For a step of time:
Newton iterations Calculation of the tangent matrix and the second limb
End of Newton iterations
Updating the internal variable \(\alpha\)
One could legitimately ask why the internal variable is not updated during Newton’s iterations. In fact, as it is a parameter measuring irreversibility, and determined by a maximum over time, it should only be updated at each converged time step. In fact, in the opposite case, if this parameter exceeds its equilibrium value during a Newton’s iteration, Newton’s algorithm will then be unable to reduce it to find the equilibrium value.
In the one-dimensional case, Newton’s method is an iterative process that makes it possible to approach the zeros of a continuous and differentiable function. We’re getting back to the \(F(x)=0\) resolution. We build a sequence of points \({x}^{k}\) by doing a Taylor expansion of \(F\) in the vicinity of \({x}^{k}\), which gives the first order:
\(F({x}^{k+1})\approx F({x}^{k})+{F}^{\text{'}}({x}^{k})({x}^{k+1}-{x}^{k})\)
By noting \({\mathrm{\delta x}}^{k}={x}^{k+1}-{x}^{k}\) the increment between two successive iterations, the equation linearized at iteration \(k+1\) is then as follows:
\({F}^{\text{'}}({x}^{k}){\mathrm{\delta x}}^{k}=-F({x}^{k})\)
In the case of the finite element method, \({F}^{\text{'}}({x}^{k})\) is similar to the tangent matrix, which can be calculated at each iteration if necessary, \({\mathrm{\delta x}}^{k}\) is the vector of the increments of the nodal unknowns, and \(F({x}^{k})\) is the second member. Note that \({F}^{\text{'}}({x}^{k})\) and \(F({x}^{k})\) only involve quantities from iteration \(k\), which are therefore known quantities.
4.2. Differentiation of cohesive law#
To give an example of the differentiation of the cohesive law coupling the modes, consider the regularized cohesive law CZM_EXP_REG. The differential of \({t}_{c}(\mathrm{〚}u\mathrm{〛})\) will be \(\frac{\mathrm{\partial }{t}_{c}}{\mathrm{\partial }\mathrm{〚}u\mathrm{〛}}\mathrm{\cdot }\mathrm{〚}\delta u\mathrm{〛}\) with:
Gold \(\frac{\mathrm{\partial }{t}_{c}}{\mathrm{\partial }\mathrm{〚}u\mathrm{〛}}\mathrm{=}H({\mathrm{〚}u\mathrm{〛}}_{\text{èq}}\mathrm{-}\alpha )\frac{\mathrm{\partial }{\sigma }_{\mathit{lin}}}{\mathrm{\partial }\mathrm{〚}u\mathrm{〛}}+(1\mathrm{-}H({\mathrm{〚}u\mathrm{〛}}_{\text{èq}}\mathrm{-}\alpha ))\frac{\mathrm{\partial }{\sigma }_{\mathit{dis}}}{\mathrm{\partial }\mathrm{〚}u\mathrm{〛}}+\frac{\mathrm{\partial }{\sigma }_{\mathit{pen}}}{\mathrm{\partial }\mathrm{〚}u\mathrm{〛}}\)
We reuse the expressions of these three partial derivatives that are given in [R7.02.11], with \(\delta =⟦u⟧\). In the expression for \({\sigma }_{\mathit{dis}}\), you must write \(\alpha \mathrm{=}{\mathrm{〚}u\mathrm{〛}}_{\mathit{èq}}\), which thus becomes a variable to be taken into account in the derivation. In practice, in the code, four cases are distinguished for clarity of reading:
\({⟦u⟧}_{\mathit{èq}}\ge \alpha \mathrm{et}⟦{u}_{n}⟧\ge 0\) (non-contacting dissipative). So we have: \(\frac{\partial {t}_{c}}{\partial ⟦u⟧}={\sigma }_{c}\mathrm{exp}\left(-\frac{{\sigma }_{c}}{{G}_{c}}{⟦u⟧}_{\mathit{èq}}\right)\left(\frac{\text{Id}}{{⟦u⟧}_{\mathit{èq}}}-\frac{⟦u⟧}{{⟦u⟧}_{\mathit{èq}}}\otimes \frac{⟦u⟧}{{⟦u⟧}_{\mathit{èq}}}\left(\frac{{\sigma }_{c}}{{G}_{c}}+\frac{1}{{⟦u⟧}_{\mathit{èq}}}\right)\right)\)
\({⟦u⟧}_{\mathit{èq}}<\alpha \mathrm{et}⟦{u}_{n}⟧<0\) (rubber band contacting). With \(({\tau }_{1},{\tau }_{2})\) a tangential plane base, we have: \(\frac{\partial {t}_{c}}{\partial ⟦u⟧}=\frac{\partial {\sigma }_{\mathit{lin}}(⟦{u}_{\tau }⟧)}{\partial ⟦u⟧}+\frac{\partial {\sigma }_{\mathit{pen}}(⟦{u}_{n}⟧)}{\partial ⟦u⟧}=Cn\otimes n+\frac{{\sigma }_{c}}{\alpha }\mathrm{exp}(\frac{-{\sigma }_{c}}{{G}_{c}}\alpha )\left({\tau }_{1}\otimes {\tau }_{1}+{\tau }_{2}\otimes {\tau }_{2}\right)\)
\({⟦u⟧}_{\mathit{èq}}\ge \alpha \mathrm{et}⟦{u}_{n}⟧<0\) (dissipative contacting). By similar reasoning by replacing \({\sigma }_{\mathit{lin}}\) with \({\sigma }_{\mathit{dis}}\), we get: \(\frac{\partial {t}_{c}}{\partial ⟦u⟧}=Cn\otimes n+\mathrm{exp}\left(\frac{-{\sigma }_{c}}{{G}_{c}}{⟦u⟧}_{\mathit{èq}}\right)\left[\frac{{\sigma }_{c}}{{⟦u⟧}_{\mathit{èq}}}\left({\tau }_{1}\otimes {\tau }_{1}+{\tau }_{2}\otimes {\tau }_{2}\right)-\left(\frac{{\sigma }_{c}^{2}}{{G}_{c}}+\frac{{\sigma }_{c}}{{⟦u⟧}_{\mathit{èq}}}\right)\frac{{⟦u⟧}_{\tau }\otimes {⟦u⟧}_{\tau }}{{{⟦u⟧}_{\mathit{èq}}}^{2}}\right]\)
\({⟦u⟧}_{\mathit{èq}}<\alpha \mathrm{et}⟦{u}_{n}⟧\ge 0\) (non-contacting elastic). \(\frac{\partial {t}_{c}}{\partial ⟦u⟧}=\frac{{\sigma }_{c}}{\alpha }\mathrm{exp}(\frac{-{\sigma }_{c}}{{G}_{c}}\alpha )\text{Id}\)
4.3. Linearization of the problem#
4.3.1. Integral writing for a formulation with regularized cohesive law#
The linear system of the three equations at Newton’s iteration \(k+1\) is written as follows (to avoid making it heavier, the references to Newton’s iteration are omitted, because obviously, the unknowns are noted with a \(\delta\) in front, and the test fields are now noted with a star):
Find \(\left(\mathit{\delta u},{\mathit{\delta \lambda }}_{n},{\mathit{\delta \lambda }}_{\tau }\right)\in {V}_{0}\times H\times H\) such as:
\(\forall \left({u}^{\text{*}},{\lambda }_{n}^{\text{*}},{\lambda }_{\tau }^{\text{*}}\right)\in {V}_{0}\times H\times H\)
Equation of balance |
\(\begin{array}{c}{\int }_{\Omega }\sigma (\mathit{\delta u})\mathrm{:}\epsilon ({u}^{\text{*}})d\Omega \\ +{\int }_{{\Gamma }_{c}}\left[\frac{\partial {t}_{c,n}}{\partial {⟦u⟧}_{n}}{⟦\delta u⟧}_{n}+\frac{\partial {t}_{c,n}}{\partial {⟦u⟧}_{\tau }}{⟦\delta u⟧}_{\tau }\right]{⟦{u}^{\text{*}}⟧}_{n}{\mathit{d\Gamma }}_{c}\\ +{\int }_{{\Gamma }_{c}}\left[\frac{\partial {t}_{c,\tau }}{\partial {⟦u⟧}_{n}}{⟦\delta u⟧}_{n}+\frac{\partial {t}_{c,\tau }}{\partial {⟦u⟧}_{\tau }}{⟦\delta u⟧}_{\tau }\right]{⟦{u}^{\text{*}}⟧}_{\tau }{\mathit{d\Gamma }}_{c}\\ =-{\int }_{\Omega }\sigma (u)\mathrm{:}\epsilon ({u}^{\text{*}})d\Omega +{\int }_{\Omega }f\cdot {u}^{\text{*}}d\Omega +{\int }_{{\Gamma }_{t}}t\cdot {u}^{\text{*}}{\mathit{d\Gamma }}_{t}\\ -{\int }_{{\Gamma }_{c}}\left({t}_{c,n}{⟦{u}^{\text{*}}⟧}_{n}+{t}_{c,\tau }{⟦{u}^{\text{*}}⟧}_{\tau }\right){\mathit{d\Gamma }}_{c}\end{array}\) |
Interface: normal part |
\({\int }_{\mathit{\Gamma c}}{\lambda }_{n}^{\text{*}}\left({\lambda }_{n}+{\text{δλ}}_{n}-{t}_{c}\cdot n\right){\mathit{d\Gamma }}_{c}=0\) |
Interface: tangential part |
\({\int }_{\mathit{\Gamma c}}{\lambda }_{\tau }^{\text{*}}\left({\lambda }_{\tau }+\delta {\lambda }_{\tau }-{t}_{c,\tau }\right){\mathit{d\Gamma }}_{c}=0\) |
4.3.2. Integral writing for a formulation with mixed cohesive law for quadratic elements#
The linear system of the three equations at Newton’s iteration \(k+1\) is written as follows (to avoid making it heavier, the references to Newton’s iteration are omitted, because obviously, the unknowns are noted with a \(\delta\) in front, and the test fields are now noted with a star):
Find \((\mathit{\delta u},\mathit{\delta \lambda })\mathrm{\in }{V}_{0}\mathrm{\times }H\) such as:
\(\mathrm{\forall }({u}^{\text{*}},{\lambda }^{\text{*}})\mathrm{\in }{V}_{0}\mathrm{\times }H\)
Equation of balance |
\(\begin{array}{c}{\int }_{\Omega }\sigma \left(\delta u\right)\mathrm{:}ϵ\left({u}^{\text{*}}\right)d\Omega +{\int }_{\Gamma }\left(\mathit{Id}-r\frac{\partial \delta }{\partial p}\right)\cdot \delta \lambda \cdot ⟦{u}^{\text{*}}⟧d\Gamma \\ +{\int }_{\Gamma }r\left(\mathit{Id}-r\frac{\partial \delta }{\partial p}\right)\cdot ⟦\delta u⟧\cdot ⟦{u}^{\text{*}}⟧d\Gamma \\ =-{\int }_{\Omega }\sigma \left(u\right)\mathrm{:}ϵ\left({u}^{\text{*}}\right)d\Omega +{\int }_{\Omega }f\cdot {u}^{\text{*}}d\Omega +{\int }_{{\Gamma }_{t}}t\cdot {u}^{\text{*}}d\Gamma \\ -{\int }_{{\Gamma }_{c}}\left[\lambda +r\left(⟦u⟧-\delta (p)\right)\right]\cdot ⟦{u}^{\text{*}}⟧d\Gamma \end{array}\) |
Interface law |
\(\begin{array}{c}{\int }_{{\Gamma }_{c}}\left(1-r\frac{\partial \delta }{\partial p}\right)\cdot ⟦u⟧\cdot {\lambda }^{\text{*}}d\Gamma -{\int }_{\Gamma }\frac{\partial \delta }{\partial p}\cdot \delta \lambda \cdot \lambda \text{*}d\Gamma \\ =-{\int }_{\Gamma }\left(⟦u⟧-\delta \right)\cdot {\lambda }^{\text{*}}d\Gamma \end{array}\) |
4.3.3. Integral writing for a formulation with mixed cohesive law for linear elements#
The linear system to be solved for a Newtonian iteration is written as:
Find \(\left(\mathit{\delta u},\delta \mu ,\mathit{\delta w},\mathit{\delta \lambda }\right)\in {V}_{0}\times H\times H\times H\) such as:
\(\forall \left({u}^{\text{*}},{\mu }^{\text{*}},{w}^{\text{*}},{\lambda }^{\text{*}}\right)\in {V}_{0}\times H\times H\times H\)
Equation of balance |
\(\begin{array}{c}{\int }_{\Omega }\sigma (\delta u)\mathrm{:}ϵ({u}^{\text{*}})d\Omega +{\int }_{\Gamma }\delta \mu \cdot ⟦{u}^{\text{*}}⟧d\Gamma \\ =-{\int }_{\Omega }\sigma (u)\mathrm{:}ϵ({u}^{\text{*}})d\Omega +{\int }_{{\Gamma }_{g}}g\cdot {u}^{\text{*}}d{\Gamma }_{g}-{\int }_{\Gamma }\mu \cdot ⟦{u}^{\text{*}}⟧d\Gamma \end{array}\) |
Move jump projection |
\({\int }_{\Gamma }\left(⟦\delta u⟧-\delta w\right)\cdot {\mu }^{\text{*}}d\Gamma =-{\int }_{\Gamma }\left(⟦u⟧-w\right)\cdot {\mu }^{\text{*}}d\Gamma\) |
Cohesive constraint |
\(\begin{array}{c}-{\int }_{\Gamma }\left[\delta \mu -\frac{\partial {t}_{c}}{\partial (\lambda +rw)}\cdot \left(\delta \lambda +r\delta w\right)\right]\cdot {w}^{\text{*}}d\Gamma \\ ={\int }_{\Gamma }\left[\mu -{t}_{c}(\lambda +rw)\right]\cdot {w}^{\text{*}}d\Gamma \end{array}\) |
Interface law |
\(\begin{array}{c}-{\int }_{\Gamma }\left[\frac{\delta \lambda }{r}-\frac{\partial {t}_{c}}{\partial (\lambda +rw)}\cdot \left(\frac{\delta \lambda }{r}+\delta w\right)\right]\cdot {\lambda }^{\text{*}}d\Gamma \\ ={\int }_{\Gamma }\frac{\left[\lambda -{t}_{c}(\lambda +rw)\right]}{r}\cdot {\lambda }^{\text{*}}d\Gamma \end{array}\) |