7. Bibliography#
Dolbow. J., Moes. N., Belytchko. T. Discontinuous enrichment in finite elements with a partition of unity method. Finite Element in Analysis and Design. 36 (2000) 235-260.
Belyschko. T., Black. T. elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45 (1999) 601-620.
Moes. No, Doldbow. J., Belytchko. T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46 (1999) 131-150.
Melenk.J.M., Babuška.I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139 (1996) 289-314.
Khoei. A.R., Haghighat. E. Extended finite element modeling of deformable porous media with arbitrary interfaces. Applied Mathematical Modeling, 35 (2011) 5426-5441.
Khoei. A.R., Moallemi. S., Haghighat. E. Thermo-hydro-mechanical modeling of impermable discontinuity in saturated porous media with XFEM technique. Engineering Fracture Mechanics, 96 (2012) 701-723.
The champion. B. An extended finite element method for hydraulic fracture problems. Communications in Numerical Methods in Engineering, 25 (2) 2009.
Bathe.K.J, Brezzi.F. Stability of finite element mixed interpolations for contact problems. Give back. Matt. Acc. Lincei., 12 (9): 167-183, 2001
Babuška.I. The finite element method with lagrangian multipliers. Numerische Mathematik. 20 (3) (179-192, 1973).
Schaap. M.G, Van Genuchten M.Th. A Modified Mualem-van Genuchten Formulation for Improved Description of the Hydraulic Conductivity Near Saturation. Vadose Zone Journal, 5 (2006) 27-34.
Witherspoon. P., Wang. J., Iwai. K., Gale. J. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res., 16 (6) 1980.
Barenblatt. G. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics. 7 (1962) 55-129.
Homand. F., Duffaut. P., Manual of rock mechanics. Volume 1: The foundations, Les Presses de l’Ecole des Mines, Paris, 2000
Ern and S. Meunier. A posteriori error analysis of eurler-galerkin approximations to coupled elliptic-parabolic problems. ESAIM: M2 YEAR, 43:353-375, 2009
Faivre, B. Paul, F. Golfier, F. Golfier, R. Giot, P. Massin and D? Colombo: 2D coupled HM- XFEM modeling with cohesive zone model and applications to fluid-driven fracture network.