6. Bibliography#
COLOMBO D., GIGLIO M., « A methodology for automatic crack propagation modelling in planar and shell FE models », Engineering Fracture Mechanics, vol. 73, pp. 490-504, 2006
DHONDT G., « Automatic 3-D mode I crack propagation calculations with finite elements », International Journal for Numerical Methods in Engineering, vol. 41, pp. 739-757, 1998
HenshellR.D., Shawk.g., « Crack tip finite elements are unnecessary « , International Journal for Numerical Methods in Engineering, vol. 9, pp. 495-507, 1975.
ANDRIER B., GARBAY E., HASNAOUI F., MASSIN P., P., « Helix-shaped and transverse cracking of rotor shafts based on disk shrunk technology « , Proceedings of the 7th International Conference on Biaxial/Multiaxial Fracture and Fatigue, Berlin, Germany, 2004
Rétroré J., « Finite element method extended in space and time: application to the dynamic propagation of cracks « , Doctoral thesis, National Institute of Applied Sciences of Lyon, 2005
BELYTSCHKO T., KRONGAUZ Y., ORGAN D., FLEMING M., M., « Meshless methods: an overview and recent developments », Computer Methods in Applied Mechanics and Engineering, vol. 139, pp. 3-47, 1996
Fries T-P., Matthies H-G., « Classification and overview of Meshfree methods », computer report no.: 2003-3, July, 2004
Li S.C., Cheng Y.M., « Enriched meshless manifold method for two-dimensional crack modelling », Theoretical and Applied Fracture Mechanics, vol. 44, pp. 234—248, 2005
Duarte C.A., Babuška I., Oden J.T., Oden J.T., « Generalized finite element method for three-dimensional structural mechanics problems « , Computers & Structures, vol. 77, pp. 215-232, 2000
Duarte C.A., Hamzeh O.N., Liszka T.J., Liszka T.J., Tworzydlo W.W., « A generalized finite element method for the simulation of three dimensional dynamic crack propagation « , Computer Methods in Applied Mechanics and Engineering, » Computer Methods in Applied Mechanics and Engineering, vol. 190, vol. 190, pp. 2227-2262, 2001
Belytchko T., BLACK T., « Elastic crack growth in finite elements with minimal remeshing ». International Journal for Numerical Methods in Engineering, Vol.45, Pages 601-620, 1999
Grvouil A., Moes N., Belytschko T., « Non-planar 3D crack growth by the extended finite element and level sets - Part II: Level set update », International Journal for Numerical Methods in Engineering, vol. 53, vol. 53, pp. 2569-2586, 2002
OSHER S., SETHIAN J.A., « Fronts propagations with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations », Journal of Computational Physics, vol. 79, vol. 79, pp. 12-49, 1988
Belytschko T., Moës N., Usui S., Usui S., Parimi C., « Arbitrary discontinuities in finite elements », International Journal for Numerical Methods in Engineering, vol. 50, vol. 50, pp. 993-1013, 2001
Sukumar N., Chopp D.L., Moës N., Moës N., Belytschkot., « Modeling holes and inclusions by level sets in the extended finite-element method », Computer methods in applied mechanics and engineering, vol. 190, vol. 190, pp. 6183-6200, 2001
Sukumar N., Chopp D.L., Moran B., Moran B., « Extended finite element method and fast marching method for three-dimensional fatigue crack propagation », Engineering Fracture Mechanics, vol. 70, vol. 70, pp. 29-48, 2003
Stolarska M., Chopp D.L., Moës N., Moës N., Belytschkot., « Modelling crack growth by level sets in the extended finite element method », International Journal for Numerical Methods in Engineering, vol. 51, vol. 51, pp. 943-960, 2001
Moës N., Grvouil A., Belytschko T., « Non-planar 3D crack growth by the extended finite element and level sets - Part I: Mechanical model », International Journal for Numerical Methods in Engineering, vol. 53, vol. 53, pp. 2549-2568, 2002
« Unilateral contact through kinematic conditions », Code_Aster reference manual, document no. [R5.03.50]
Cloirec M., « Application of X- FEM to parallel calculations and multi-scale problems », Doctoral thesis, École Centrale de Nantes, 2005
GOMES J., FAUGERAS O., « Reconciling distance functions and level sets », research report no. 3666 from INRIA, 1999
Daux C., Moës N., Dolbow J., Dolbow J., Sukumar N., Sukumar N., Sukumar N., Sukumar N., Sukumar N., Sukumar N., Belytschko T., « Arbitrary branched and intersectioning cracks with the extended finite element method », International Journal for Numerical Methods in Engineering, vol. 48, vol. 48, pp. 1171-1760, 2000
Melenk J.M., Babuška I., « The partition of unity finite element method: Basic theory and applications », Computer Methods in Applied Mechanics and Engineering, vol. 139, pp. 289-314, 1996
Moës N., Dolbow J., Belytschko T., « A finite element method for crack growth without remeshing », International Journal for Numerical Methods in Engineering, vol. 46, pp. 131-150, 1999
IRWIN G.R., « Analysis of stresses and strains near the end of crack crossing a plate, » Journal of Applied Mechanics, Sept. 1957
SROUBOULIS T., BabušKai., COPPS K., « The design and analysis of the Generalized Finite Element Method », Computer Methods in Applied Mechanics and Engineering, vol. 181, pp. 43-69, 2000
Stazi F., Budyn é., Chessa J., Chessa J., Belytschko T., « An extended finite element method with high-order elements for curved cracks », Computational Mechanics, vol. 31, vol. 31, pp. 38-48, 2003
Béchet E., Minnebo H., Moes N., Moes N., Burgardt B., « Improved implementation and robustness study of the X- FEM for stress analysis around », cracks `International Journal for Numerical Methods in Engineering`_ < http://www3.interscience.wiley.com/cgi-bin/jtoc/1430>, vol. 64, pp. 1033-1056, 2005
Laborde P., Pommier J., Renard Y., Renard Y., Salaün M., « High-order extended finite element method for cracked domains », International Journal for Numerical Methods in Engineering, vol. 64, vol. 64, pp. 354-381, 2005
Massin P., Moës N., « Impact study of the implementation of the X- FEM method in the Code_Aster », Report AMA, CR- AMA -03.151, EDF R&D
GENIAUT S., Convergences in fracture mechanics: validation of classical finite elements and X- FEM in Code_Aster, note H-T64-2008-00047-FR, 2008
Sukumar N., Moës N., Moran B., Moran B., Belytschko T., « Extended finite element method for three-dimensional crack modelling », International Journal for Numerical Methods in Engineering, vol. 48, vol. 48, pp. 1549-1570, 2000
Sukumar N., Prévost J.H., « Modeling quasi-static crack growth with the extended finite element method - Part I: Computer implementation », International Journal of Solids and Structures, vol. 40, vol. 40, pp. 7513-7537, 2003
Dhatt G., Touzot G, A presentation of the finite element method. 2nd edition, Maloine Ed., PARIS 1983
Minnebo H., « A new numerical approach for calculating the lifespan of reactor disks », Doctoral thesis, École Centrale de Nantes, 2006
« Contact elements derived from a continuous hybrid formulation », Code_Aster Reference Documentation no. [R5.03.52]
Ben Dhia H., Vautier I., « A formulation for treating frictional contact in 3D in Code_Aster », research report HI-75/99/007/A, June 1999, June 1999, EDF
Alart P., Curnier A., « A mixed formulation for frictional contact problems prone to Newton like solution methods », Computer Methods in Applied Mechanics and Engineering, vol. 92, pp. 353-375, 1991
Ji H., Dolbow J.E., « On strategies for enforcing interfacial constraints and evaluating jumps conditions with the extended finite element method », International Journal for Numerical Methods in Engineering, vol. 61, vol. 61, pp. 2508-2535, 2004
Pellet J., « Dualization of boundary conditions », Code_Aster Reference Material no. [R3.03.01]
Ern A., Guermond J.L., Theory and practice of finite elements, Springer, 2004
Brenner S.C., Scott L.R., The mathematical theory of finite element methods, 2nded., Springer, 2002
Laursen T.A., Simo J.C. « A continuum element-based formulation for the implicit solution of multi-body, large deformation frictional contact problem », International Journal for Numerical Methods in Engineering, vol. 36, vol. 36, pp. 3451-3485, 1993
Wriggers P., « Finite element algorithms for contact problems », Arch. Of Comp. Meth. In Eng., vol. 2, pp. 1-49, 1995
Curnier A, He, Q.C., Klarbring A., Klarbring A., « Continuum mechanics modelling of large deformation contact with friction », Contact mechanics, ed. Plenum Press, 1995
Pietrzak G., « Continuum mechanics modelling and augmented Lagrangian formulation of large deformation frictional contact problems », Doctoral thesis, École Polytechnique Fédérale de Lausanne, 1997
Alart P., Barboteu M., « Contact elements, generalized Newton method, and domain decomposition » Applied nonlinear problems, School CEA — EDF — INRIA 1999
« Rate of energy return in linear thermoelasticity », Code_Aster Reference Documentation no. [R7.02.01]
« Calculation of stress intensity coefficients in planar linear thermoelasticity », Code_Aster Reference Documentation no. [R7.02.05]
Mialon P., Calculation of the derivative of a quantity with respect to a crack bottom using the theta method, EDF — Bulletin de la Direction des Études et Recherches, Série C, No. 3, No. 3, pp. 1-28, 1988
Chapelle D., Bathe K.J., « The INF-Sup Test », Computers & Structures, vol. 47, pp. 537-545, 1993
Moës N., Béchet E., Tourbier M., « Imposing essential boundary conditions in the X- FEM », International Journal for Numerical Methods in Engineering , 2006
Gosz M., Moran B., « An interaction energy integral domain method for computation of mixed-mode stress intensity factors along non-planar cracks fronts in three dimensions », Engineering Fracture Mechanics, vol. 69, vol. 69, pp. 299-319, 2002
Gosz M., Dolbow J., Moran B., « Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks », International Journal of Solids and Structures, vol. 35, no. 15, no. 15, no. 15, pp. 1763-1783, 1998
Erdogan G., Sih G.C., « On the crack extension in plates under plane loading and transverse shear », Journal of Basic Engineering, vol. 85, pp. 519-27, 1963
Barth T.J., SethianJ.A., « Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains », Journal of Computational Physics, vol. 145, pp. 1-40, 1998
Crandall M.G., Lions P.L., « Two approximations of solutions of Hamilton-Jacobi equations », Mathematics of Computation, vol. 43, pp. 1-19, 1984
Deconinck H., Struijs R., Roep.l., « Compact Advection Schemes on Unstructured Grids », Technical Report, VKI, VKI LS 1993-04, Computational Fluid Dynamics, 1993
Roep.l., « Linear Advection Schemes on Triangular Meshes », Technical Report CoA 8720, Cranfield Institute of Technology, 1987
Roep.l., « Optimum Upwind Advection on Triangular Mesh », ICASE 90-75, 1990
PENG D., MERRIMAN B., OSHER S., ZHAO H., H., KANG M., « A PDE -based fast local level set method », Journal of Computational Physics, vol. 155, pp. 410-438, 1999
ADALSTEINSSON D., SETHIAN J.A., « A fast level set method for propagating interfaces », Journal of Computational Physics, vol. 118, pp. 269-277, 1995
PRABEL B., COMBESCURE A., GRAVOUIL A., MARIE S., « Level set X- FEM non matching meshes: application to dynamic crack propagation in elastic-plastic media », International Journal for Numerical Methods in Engineering, vol. 1, vol. 1, pp. 1-15, 2006
DUFLOT M., « A study of the representation of cracks with level sets », International Journal for Numerical Methods in Engineering, vol. 70, pp. 1261-1302, 2007
MESCHKE G., DUMSTORFF P., « Energy-based modelling of cohesive and cohesionless cracks via X- FEM », Computational Methods in Applied Mechanics Engineering, Vol. 196, Vol. 196, pp. 2338-2357, 2007
COLOMBO, PATRICK MASSIN, « Fast and Robust Level Set Update for 3D Non-Planar X- FEM Crack Propagation Modelling », Computer Methods in Applied Mechanics and Engineering, 200 (2011), 200 (2011), 2160-2180
SUKUMAR N., CHOPP D.L., BE CHET E., MOëS N., N., « Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method », International Journal Numerical Methods in Engineering, 76 (2008), 727-748
SHI J., CHOPP D., LUA J., SUKUMAR N., N., BELYTSCHKO T., « Abaqus implementation of extended finite element method using a level set representation of three-dimensional fatigue crack growth and life predictions », Engineering Fracture Mechanics, 77 (2010), 2840-2863
CITARELLA R., BUCHHOLZ F.-G., Comparison of crack growth simulation by DBEM and FEM for SEN -specimens undergoing torsion or bending loading, Engineering Fracture Mechanics, 75 (2008), 75 (2008), 489-509
DAUX C., MOES N., DOLBOW J., SUKUMAR N., N., BELYTSCHKO T., « Arbitrary branched and intersecting cracks with the extended finite element method », International Journal for Numerical Methods in Engineering, 48 (2000), 48 (2000), 1741-1760
DANIELE COLOMBO, « An implicit geometrical approach to level sets update for 3D non planar X- FEM crack propagation », submitted to Computer Methods in Applied Mechanics and Engineering
SIAVELIS M., « Numerical modeling X- FEM of large sliding with friction along a network of discontinuities. » Doctoral thesis, Ecole Centrale de Nantes, 2011
FRIES T.P., « A corrected XFEM approximation without problems in blending elements », Int. Mr Numer. Meth. Eng., 75:503-532, 2008.
« Transient linear thermal algorithm », Code_Aster Reference Material no. [R5.02.01]
DUFLOT M., « The extended finite element method in thermoelastic fracture mechanics », International Journal for Numerical Methods in Engineering, vol. 74, pp. 827-847, 2008
Hansbo, P. Hansbo. A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech. Engrg., volume 193, 3523—3540, 2004.